DOI QR코드

DOI QR Code

전산화단층영상장비에서 패각을 이용한 방사선 융합차폐체의 표면 방사선량 감소율과 방사선 인공물 영상 평가

Evaluation of Surface Radiation Dose Reduction and Radiograph Artifact Images in Computed Tomography on the Radiation Convergence Shield by Using Sea-Shells

  • 성열훈 (청주대학교 방사선학과)
  • 투고 : 2017.01.03
  • 심사 : 2017.02.20
  • 발행 : 2017.02.28

초록

본 실험에서는 전산화단층영상장비에서 패각을 이용하여 제작한 방사선 융합차폐체의 표면 방사선 감소율과 방사선 인공물 영상을 평가하고자 하였다. 방사선 융합차폐체는 실리콘, 패각, 바륨분말을 이용하여 직경 50 mm, 두께 3.5 mm의 원형 차폐체 5종 (실리콘 차폐체, 바륨 차폐체, 실리콘과 패각 혼합 차폐체, 실리콘과 바륨 혼합 차폐체, 실리콘과 패각 그리고 바륨 혼합 차폐체)을 제작하였다. 방사선발생과 획득은 4 다중채널 전산화단층영상장비를 이용하였다. 그 결과 실리콘과 패각 혼합 차폐체가 영상의 인공물 발생 없이 5.3%의 표면 방사선 감소효과가 있었다. 향후 다양한 형태를 만들 수 있는 실리콘의 장점과 패각의 재활용으로 인한 친환경적인 소재로 방사선 융합차폐체 제작에 도움을 줄 수 있으리라 기대한다.

The purpose of this present study was to evaluate the surface radiation dose reduction and radiograph artifact images in computed tomography (CT) for the manufactured radiation shields by using sea-shells. The radiation convergence shields were made from silicons, sea-shells, barium powders, producted circle types of diameter 50 mm, thickness 3.5 mm for 5 kinds (only silicon shield, only barium shield, mixed sea-shells with silicon shield, mixed barium with silicon shield, mixed sea-shells with barium and silicon shield). Radiation generation and acquisition were used 4-channel multi-detector CT. The results of this study showed that mixed sea-shells with silicon shields could reduce the surface dose of 5.3% without radiograph artifact images. In the future, we will expect the radiation convergence shield as environmentally friendly materials by using the recycling of sea-shells with the advantages of silicon which can make various shapes.

키워드

참고문헌

  1. B. S. Lim, "Radiation Exposure Dose on Persons Engaged in Radiation-related Industries in Korea", Journal of Korean Society of Radiological Technology, Vol. 29, No. 3, pp. 185-195, 2006.
  2. http://www.mfds.go.kr
  3. International Commission on Radiological Protection. 1990 Recommendations of the International Commission on Radiological Protection: ICRP publication 60. Oxford: Pergamon Press, 1991.
  4. D. J. Brenner, E. J. Hall, "Computed tomography-an increasing source of radiation exposure", N Engl J Med, Vol. 357, No. 22, pp. 2277-2284, 2007. https://doi.org/10.1056/NEJMra072149
  5. J. K. Lee, S. J. Jang, Y. I. Jang, "Medical Radiation Exposure in Children CT and Dose Reduction", Journal of the Korea Contents Association, Vol. 14, No. 1, pp. 356-363, 2014. https://doi.org/10.5392/JKCA.2014.14.01.356
  6. K. H. Do, "Strategies of computed tomography radiation dose reduction: justification and optimization", J Korean Med Assoc, Vol. 58, No. 6, pp. 534-541, 2015. https://doi.org/10.5124/jkma.2015.58.6.534
  7. K. B. Kim, E. H. Goo, "Image Evaluation for A Kind of Patient Fixing Pad in 64 Multi-Channel Detector Computed Tomograph", Journal of the Korea Convergence Society Vol. 7. No. 1, pp. 89-95, 2016. https://doi.org/10.15207/JKCS.2016.7.1.089
  8. Y. Park. S. H. Kim, "The Study of Effectiveness of Volume Mode in Pediatric CT", Journal of Digital Convergence, Vol. 12, No. 10, pp. 425-431, 2014. https://doi.org/10.14400/JDC.2014.12.10.425
  9. Di. Zhang, Chris. H. Cagnon, J. Pablo Villablanca, Cynthia H. McCollough, D. D. Cody, M. D. Stevens, M. Zank, J. John, Demarco, C. A. Turner, Maryam. Khatonabadi, and F. Michael. Gray. McNitt, "Peak Skin and Eye Lens Radiation Dose From Brain Perfusion CT Based on Monte Carlo Simulation", AJR Am J Roentgenol, Vol. 198, No. 2, pp. 412-417, 2012. https://doi.org/10.2214/AJR.11.7230
  10. F. E. Boas, D. Fleischmann, "Evaluation of two iterative techniques for reducing metal artifacts in computed tomography". Radiology, Vol. 259, No. 3, pp. 894-902, 2011. https://doi.org/10.1148/radiol.11101782
  11. B. De Man, J. Nuyts, P. Dupont, G. Marchal, P. Suetens, "Metal streak artifacts in X-ray computed tomography: a simulation study". IEEE Transactions on Nuclear Science, Vol. 46, No. 3, pp. 691-696, 1999. https://doi.org/10.1109/23.775600
  12. K. D. Hopper, S. H. King, M. E. Lobell, T. R. TenHave, J. S. Weaver, "The Breast : In-plane X-ray Protection during Diagnostic Thoracic CT-Shielding with Bismuth Radioprotective Garments." Radiology, Vol. 205, No. 3, pp. 853-858, 1997. https://doi.org/10.1148/radiology.205.3.9393547
  13. H. S. Koo, "An Experimental Study on the Engineering Characteristics of Perforated Reinforced Concrete Beams containing Shells". The International Journal of The Korea Institute of Ecological Architecture and Environment, Vol. 15, No. 1, pp. 139-146, 2015.
  14. Y. T. Kwon, J. H. Yun, S. H. Bae, "Assessment of the Casts of Earthworm (Eisenia Andrei) Feeding on the Mixture of Sewage Sludge and Oyster Shell Powder as Soil Improvement Materials". Journal of Korea solid wastes engineering society, Vol. 25, No. 2, pp. 161-171, 2008.
  15. S. Singh, M. K. Kalra, J. H. Thrall, M. Mahesh, "Automatic Exposure Control in CT: Applications and Limitations". Journal of the American College of Radiology, Vol. 8, No. 6, pp. 446-449, 2011. https://doi.org/10.1016/j.jacr.2011.03.001
  16. X. Duan, J. Wang, J. A. Christner, S. Leng, K. L. Grant, C. H. McCollough, "Dose reduction to anterior surfaces with organ-based tube-current modulation: evaluation of performance in a phantom study". AJR Am J Roentgeno, Vol. 197, No. 3, pp. 689-695, 2011. https://doi.org/10.2214/AJR.10.6061
  17. A. K. Hara, R. G. Paden, A. C. Silva, J. L. Kujak, H. J. Lawder, W. Pavlicek. "Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study". AJR Am J Roentgeno, Vol. 193, No. 4, pp. 764-771, 2009. https://doi.org/10.2214/AJR.09.2397
  18. Y. H. Seoung, "Evaluation of Radiation Dose Reduction During CT Scans by Using Bismuth Oxide and Nano-Barium Sulfate Shields" Journal of the Korean Physical Society, Vol. 67, No. 1, pp. 1-6, 2015. https://doi.org/10.3938/jkps.67.1
  19. S. C. Kim, M. H. Park, "Development of Radiation Shielding Sheet with Environmentally Friendly Materials; II: Evaluation of Barum, Tourmaline, Silicon Polymers in the Radiation Shielding Sheet", Journal of Korean Society of Radiological Technology, Vol. 34, No. 2, pp. 141-147, 2011.
  20. S. C. Kim, M. H. Park, "Development of Radiation Shielding Sheet with Environmentally Friendly Materials;I : Comparison and Evaluation of Fiber, Rubber, Silicon in the Radiation Shielding Sheet", Journal of Korean Society of Radiological Technology, Vol. 33, No. 2, pp. 121-126, 2011.
  21. C. W. Chung, "Possibility to Recycle Domestic Waste Shells-with Emphasis on Oyster Shells", Korean Recycled Construction Resources Institute, Vol. 11, No. 1, pp. 11-16, 2016.