• Title/Summary/Keyword: radiation damage

Search Result 782, Processing Time 0.026 seconds

Efficiency Evaluation of Irradiated on Mouse Calvarial Model by BMP-2 (전리방사선이 조사된 쥐의 두개골상의 BMP-2 효용성 연구)

  • Jung, Hongmoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.811-817
    • /
    • 2019
  • Radiation-therapy causes the adverse radiation effect. It is called osteoradionecrosis. A protein-therapy is carried out in order to cure osteoradionecrosis. The typical method of the protein-therapy is using BMP-2. Considering to bone damage, it is more important that maintains enough to circumstance regeneration for osteoblast differentiation on damage site of bone. Thus, this study is on a tissue regeneration to cure radiation critical damage. I observed that the formation of new regeneration bone by injection of collagen sheet BMP-2 on irradiated mouse. Consequently, I examined new bone formation with collagen sheet BMP-2 on irradiated mouse after 8weeks. Therefore I suggested that using collagen sheet BMP-2 which can be good for new bone regeneration effect on radiation side effect area.

The Accuracy of the Calculated Dose for a Cardiac Implantable Electronic Device

  • Sung, Jiwon;Son, Jaeman;Park, Jong Min;Kim, Jung-in;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.150-154
    • /
    • 2019
  • The objective of this study is to monitor the radiation doses delivered to a cardiac implantable electronic device (CIED) by comparing the absorbed doses calculated by a commercial treatment planning system (TPS) to those measured by an in vivo dosimeter. Accurate monitoring of the radiation absorbed by a CIED during radiotherapy is necessary to prevent damage to the device. We conducted this study on three patients, who had the CIED inserted and were to be treated with radiotherapy. Treatment plans were generated using the Eclipse system, with a progressive resolution photon optimizer algorithm and the Acuros XB dose calculation algorithm. Measurements were performed on the patients using optically stimulated luminescence detectors placed on the skin, near the CIED. The results showed that the calculated doses from the TPS were up to 5 times lower than the measured doses. Therefore, it is recommended that in vivo dosimetry be conducted during radiotherapy for CIED patients to prevent damage to the CIED.

The Effect of Ionizing Radiation on the Ultrastructural Changes and Mechanism on the Cytoplasmic Organelles (전리방사선이 세포질 소기관의 미세구조변화와 기전에 미치는 영향)

  • Lee, Moo Seok;Lee, Jong Kyu;Nam, Ji Ho;Ha, Tae Yeong;Lim, Yeong Hyeon;Kil, Sang Hyeong
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.708-725
    • /
    • 2017
  • Ionizing radiation is enough energy to interact with matter to remove orbital electrons, neutrons, and protons in the atom. Ionizing radiation like this leads to oxidizing metabolism that alter molecular structure through direct and indirect interactions of radiation with the deoxyribonucleic acid in the nucleus and cytoplasmic organelles or via products of cytoplasm radiolysis. These ionization can result in tissue damage and disruption of cellular function at the molecular level. Consequently, ionizing radiation-induced modifications of ion channels and transporters have been reported. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Also, Reactive oxygen species formed on the effect of ionizing radiation can get across into neighboring cells through the cell junctions that are responsible for intercellular chemical communication, and may there bring about changes characteristic to radiation damage. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. This paper briefly reviewed reports on ionization radiation effects on cellular level that support the concept of radiation biology. A better understanding of the biological effects of ionizing radiation will lead to better use of and better protection from radiation.

Protection of Radiation induced Somatic Damage by the Reduction of Oxidative Stress at Critical Organs of Rat with Naringenin Administration

  • Park, Ji Eun;Kang, Seong Hee;Kim, Hyun Mi;Kim, Suk Hee;Kang, Bo Sun
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.6
    • /
    • pp.829-834
    • /
    • 2016
  • Free radicals originate due to the radiolysis of cytoplasmic water with low "Linear Energy Transfer" (LET) radiations. Naringenin (Ng) is a natural antioxidative compound found in citrus fruits. This study revealed that Naringenin (Ng) reduced the radiation damage of critical organs by scavenging oxidative free radicals. In the study, Ng was orally administrated to rats daily for 7 consecutive days, prior to whole body exposure to gamma-rays. The scavenging efficacy was evaluated biochemically by measuring the concentration of cytotoxic byproducts and the activity of enzymes relevant to oxidative free radicals, after extracting the organs from the exposed rat. We observed increased levels of malondialdehyde (MDA) concentration, and decrease in the activities of superoxide dismutase (SOD) and catalase (CAT) in the exposed control group. However, pretreatment with Ng significantly reduced the MDA concentration, and increased the activities of SOD and CAT, as compared to the control group, due to the free radical scavenging by Ng. The results indicate that Ng administration prior to irradiation could protect critical organs from radiation damage.

The Wireless Radiation Measurement Using Embedded System (임베디드 시스템에 의한 방사선의 무선계측)

  • Kim, Hyong-Jong;Park, Dae-Sung;Lee, Sang-Bock
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.1
    • /
    • pp.11-16
    • /
    • 2008
  • Radiation is used in various field, including medical science, engineering science, agricultural science and other industrial fields and the use frequency of radiation is increasing thanks to the development of radiation technology. Although radiation contributes to the mankind so much, we must pay attention to radiation damage by its influence on human body. To use radiation properly and prevent the radiation damage, it is necessary to measure radiation exactly and to practice thorough research and education on the basis of this measurement. In this study, I suggest the method to measure radiation wirelessly without the limit of time and space, not approaching radiation having a harmful effect on human body by using ubiquitous computing technology. For the realization of suggested method, the wireless transmission technology of CDMA network is used and after installing embedded system in PDA, the measurement value is displayed through accessing CDMA network with PDA in radiation measurement system of having fixed IP. If we use the proposed method of this study, we don't have to approach radiation that is harmful to the human and can read the measurement value that is marked in PDA through CDMA network by radiation measurement system of having fixed IP.

  • PDF

Estimation of yield strength due to neutron irradiation in a pressure vessel of WWER-1000 reactor based on the correction of the secondary displacement model

  • Elaheh Moslemi-Mehni;Farrokh Khoshahval;Reza Pour-Imani;M.A. Amirkhani-Dehkordi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3229-3240
    • /
    • 2023
  • Due to neutron radiation, atomic displacement has a significant effect on material in nuclear reactors. A range of secondary displacement models, including the Kinchin-Pease (K-P), Lindhard, Norgett-Robinson-Torrens (NRT), and athermal recombination-corrected displacement per atom (arc-dpa) have been suggested to calculate the number of displacement per atom (dpa). As neutron elastic interaction is the main cause of displacement damage, the focus of the current study is to calculate the atomic displacement caused by the neutron elastic interaction in order to estimate the exact amount of yield strength in a WWER-1000 reactor pressure vessel. To achieve this purpose, the reactor core is simulated by MCNPX code. In addition, a program is developed to calculate the elastic radiation damage induced by the incident neutron flux (RADIX) based on different models using Fortran programming language. Also, due to non-elastic interaction, the displacement damage is calculated by the HEATR module of the NJOY code. ASME E-693-01 standard, SPECTER, NJOY codes, and other pervious findings have been used to validate RADIX results. The results showed that the RADIX(arc-dpa)/HEATR outputs have appropriate accuracy. The relative error of the calculated dpa resulting from RADIX(arc-dpa)/HEATR is about 8% and 46% less than NJOY code, respectively in the ¼ and ¾ vessel wall.

Evaluation of DNA Damage and Repair Kinetics in the Earthworm (Eisenia fetida) Exposed to Radiation and Mercury (방사선과 수은에 의해 유도된 Eisenia fetida 체강세포의 DNA 손상 및 수복 평가)

  • Ryu, Tae-Ho;Nili, Mohammad;An, Kwang-Guk;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.68-73
    • /
    • 2011
  • The single cell gel electrophoresis (SCGE) assay is a microelectrophoretic technique for assessments of DNA damage at the level of the individual eukaryotic cell. The SCGE assay, due to its simplicity, sensitivity and need of a few cells, has advantages compared to other genomic damage assays such as sister chromatid exchange, chromosomal aberration and micronucleus test. In this study, investigated were the levels of DNA damage and the repair kinetics in the coelomocytes of Eisenia fetida treated with HgCl2 and ionizing radiation by means of the SCGE assay. For detecting DNA damage and repair in coelomocytes, earthworms (E. fetida) were irradiated with six doses of ${\gamma}$-rays (0, 2.5, 5, 10, 20 and 50 Gy) and in vivo exposed to mercuric chloride at 0, 80 and 160 mg $kg^{-1}$ for 48 hours. Then the Olive tail moments were measured during 0~12 hours after irradiation and 0~72 hours after Hg treatment. The results showed that the more the oxidative stress was induced by mercury and radiation, the longer the repair time was required. Also, the results suggest that the SCGE assay may be used as an important tool for comparison of the sensitivity of different species to oxidative stresses.

Radioprotective Effect of Post-treatment with Rutin on γ-Irradiation-induced Cellular Damage in Mice (감마선 조사로 유도된 세포 손상 마우스에서 루틴 투여 후의 방사선 방호 효과)

  • Kang, Jung Ae;Yoon, Seon Hye;Rho, Jong Kook;Choi, Dae Seong;Jang, Beom-Su;Park, Sang Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.388-393
    • /
    • 2015
  • This study aimed to investigate the therapeutic effect of rutin against whole-body ${\gamma}$-irradiation in BALB/c mice. BALB/c mice were randomly divided into four groups and exposed to 6 Gy ${\gamma}$-irradiation. One hour later, mice were orally administered rutin (50 and 100 mg/kg) for seven consecutive days. ${\gamma}$-Irradiation (6 Gy) resulted in cellular damage as manifested by elevated levels of plasma hepatic marker enzymes and lipid peroxidation in liver tissue, accompanied with decreased spleen and thymus indices, and white blood cell count. In addition, ${\gamma}$-irradiation significantly decreased the levels of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase and catalase. Rutin treatment significantly protected against ${\gamma}$-irradiation-induced cellular damage, which was evident by the improvement in the status of most of the investigated parameters. Therefore, rutin has beneficial effects against radiation-induced damage.