DOI QR코드

DOI QR Code

Radioprotective Effect of Post-treatment with Rutin on γ-Irradiation-induced Cellular Damage in Mice

감마선 조사로 유도된 세포 손상 마우스에서 루틴 투여 후의 방사선 방호 효과

  • Kang, Jung Ae (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Yoon, Seon Hye (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Rho, Jong Kook (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Choi, Dae Seong (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Jang, Beom-Su (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Park, Sang Hyun (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • 강정애 (한국원자력연구원 첨단방사선연구소) ;
  • 윤선혜 (한국원자력연구원 첨단방사선연구소) ;
  • 노종국 (한국원자력연구원 첨단방사선연구소) ;
  • 최대성 (한국원자력연구원 첨단방사선연구소) ;
  • 장범수 (한국원자력연구원 첨단방사선연구소) ;
  • 박상현 (한국원자력연구원 첨단방사선연구소)
  • Received : 2015.03.02
  • Accepted : 2015.04.09
  • Published : 2015.06.30

Abstract

This study aimed to investigate the therapeutic effect of rutin against whole-body ${\gamma}$-irradiation in BALB/c mice. BALB/c mice were randomly divided into four groups and exposed to 6 Gy ${\gamma}$-irradiation. One hour later, mice were orally administered rutin (50 and 100 mg/kg) for seven consecutive days. ${\gamma}$-Irradiation (6 Gy) resulted in cellular damage as manifested by elevated levels of plasma hepatic marker enzymes and lipid peroxidation in liver tissue, accompanied with decreased spleen and thymus indices, and white blood cell count. In addition, ${\gamma}$-irradiation significantly decreased the levels of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase and catalase. Rutin treatment significantly protected against ${\gamma}$-irradiation-induced cellular damage, which was evident by the improvement in the status of most of the investigated parameters. Therefore, rutin has beneficial effects against radiation-induced damage.

본 연구는 BALB/c 마우스에서 감마선 조사 후 루틴을 7일 동안 경구투여하여 감마선 조사로 인한 조혈계 및 간세포 손상에 대한 방사선 회복 효과를 검토하였다. 루틴의 투여는 감마선 조사군에 비해 조혈 면역계 손상을 억제하여 보호하였으며, 증가된 간독성 지표 효소도 유의적으로 감소하여 간세포 손상에 대한 보호효과를 확인하였다. 방사선 조사에 의해 체내에서 생성된 자유 라디칼은 생체물질과 결합하여 지질과산화를 일으키고 산화적 스트레스를 유도하여 조직을 손상시킨다. 루틴을 투여한 군은 감마선 조사군에 비해 지질과산화가 유의적으로 낮게 나타나 방사선에 의한 장해를 감소시킨 것으로 사료된다. 루틴을 투여한 군의 항산화 효소의 활성은 감마선 조사군에 비해 유의적으로 증가하여 생체 내에 항산화 활성을 회복시켰다. 이 상의 결과를 통해 방사선 조사 후에 루틴의 투여는 방사선에 의한 조혈계 및 간세포 손상에 대해 회복 효과가 있어 방사선 보호제로 유용하게 사용될 수 있다.

Keywords

References

  1. Srinivasa E, Rangaswamy DR, sannappa J. Study on natural gamma radiation hazards in and around Hassan district, Karnataka state, India. Int. J. Adv. Res. Sci. Technol. 4: 237-240 (2015)
  2. Shimura T, Yamaguchi I, Terada H, Okuda K, Svendsen ER, Kunugita N. Radiation occupational health interventions offered to radiation workers in response to the complex catastrophic disaster at the Fukushima Daiichi nuclear power plant. J. Radiat. Res. 56: 413-421 (2015) https://doi.org/10.1093/jrr/rru110
  3. Huda W. CT radiation exposure: an overview. Curr. Radiol. Rep. 3: 1-16 (2014)
  4. Khan A, Manna KC, Das DK, Sinha M, Kesh SB. Das U, Dey RS, Banerji A, Dey S. Seabuckthron (Hippophae rhamnoides L.) leaf extract ameliorates the gamma radiation mediated DNA damage and hepatic alterations. Indian J. Exp. Biol. 52: 952-964 (2014)
  5. Havaki S, Kotsinas A, Chronopoulos E, Kletsas D, Georgakilas A, Gorgoulis VG. The role of oxidative DNA damage in radiation induced bystander effect. Cancer Lett. 356: 43-51 (2015) https://doi.org/10.1016/j.canlet.2014.01.023
  6. Riklis E. Radioprotection of DNA by biochemical mechanisms. Adv. Space Res. 12: 209-212 (1992) https://doi.org/10.1016/0273-1177(92)90110-J
  7. Hosseinimehr SJ. Trends in the development of radioprotective agents. Drug Discov. Today 12: 794-805 (2007) https://doi.org/10.1016/j.drudis.2007.07.017
  8. Weiss JF, Landauer MR. History and development of radiationprotective agents. Int. J. Radiat. Biol. 85: 539-73 (2009) https://doi.org/10.1080/09553000902985144
  9. Adaramoye- O, Ogungbenro B, Anyaegbu O, Fafunso M. Protective effects of extracts of Vernonia amygdalina, Hibiscus sabdariffa and vitamin C against radiation-induced liver damage in rats. J. Radiat. Res. 49: 123-131 (2008) https://doi.org/10.1269/jrr.07062
  10. Rauha JP, Vuorela H, Kostiainen R. Effect of eluent on the ionization efficiency of flavonoids by ion spray, atmospheric pressure chemical ionization, and atmospheric pressure photoionization mass spectrometry. J. Mass Spectrom. 36: 1269-1280 (2001) https://doi.org/10.1002/jms.231
  11. Hopia A, Heinonen M. Antioxidant activity of flavonol aglycones and their glycosides in methyl linoleate. J. Am. Oil Chem. Soc. 76: 139-144 (1999) https://doi.org/10.1007/s11746-999-0060-0
  12. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio. Med. 20: 933-956 (1996) https://doi.org/10.1016/0891-5849(95)02227-9
  13. Kamalakkannan N, Stanely Mainzen Prince P. Rutin improves the antioxidant status in streptozotocin-induced diabetic rat tissues. Mol. Cell. Biochem. 293: 211-219 (2006) https://doi.org/10.1007/s11010-006-9244-1
  14. Narayana KR, Sripal Reddy M, Chaluvadi MR, Krishna DR. Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian J. Pharmacol. 33: 2-16 (2001)
  15. Afanas'ev IB, Dcrozhko AI, Brodskii AV, Kostyuk VA, Potapovitch AI. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem. Pharmacol. 38: 1763-1769 (1989) https://doi.org/10.1016/0006-2952(89)90410-3
  16. Skibola CF, Smith MT. Potential health impacts of excessive flavonoid intake. Free Radical Bio. Med. 29: 375-383 (2000) https://doi.org/10.1016/S0891-5849(00)00304-X
  17. Lee SY, Kim YM, Lee JK, Yoo SJ, Mun YJ, Woo WH. The effect of rutin on the melanogenesis and nitric oxide in UVB-irradiated HM3KO human melanoma. Anat. Cell Biol. 36: 49-56 (2003)
  18. Bergmeyer HU, Scheibe P, Wahlefeld AW. Optimization of methods for aspartate aminotransferase and alanine aminotransferase. Clin. Chem. 24: 58-73 (1978)
  19. Ohkawa H, Ohishi N, Yagi A. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351-358 (1979) https://doi.org/10.1016/0003-2697(79)90738-3
  20. Bradford MM. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  21. Gough GR, Boggs SS, Schwartz GN. Changes in thymus size observed radiographically during the course of spontaneous lymphoma in the AKR/J mouse. Lab. Anim. Sci. 27: 627-634 (1977)
  22. Pradeep K, Ko KC, Choi MH, Kang JA, Chung YJ, Park SH. Protective effect of hesperidin, a citrus flavanoglycone, against ${\gamma}$-radiation-induced tissue damage in sprague-dawley rats. J. Med. Food 15: 419-427 (2012) https://doi.org/10.1089/jmf.2011.1737
  23. Recknagel RO, Glende Jr EA, Dolak JA, Waller RL. Mechanisms of carbon tetrachloride toxicity. Pharmacol. Therapeut. 43: 139-154 (1989) https://doi.org/10.1016/0163-7258(89)90050-8
  24. Nafees S, Rashid S, Ali N, Hansan SK, Sultana S. Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in wistar rats: Role of NFkB/MAPK pathway. Chem.-Biol. Interact. 231: 98-107 (2015) https://doi.org/10.1016/j.cbi.2015.02.021
  25. Ramadan LA, Roushdy HM, Abu Senna GM, Amin NE, El-Deshw OA. Radioprotective effect of silymarin against radiation induced hepatotoxicity. Pharmacol. Res. 45: 447-454 (2002) https://doi.org/10.1006/phrs.2002.0990
  26. Patchen ML, MacVittie TJ, Williams JL, Schwartz GN, Souza LM. Administration of interleukin-6 stimulates multilineage hematopoiesis and accelerates recovery from radiation-induced hematopoietic depression. Blood 77: 472-480 (1991)
  27. Lu X, Wang, Y, Zhang Z. Radioprotective activity of betalains from red beets in mice exposed to gamma irradiation. Eur. J. Pharmacol. 615: 223-227 (2009) https://doi.org/10.1016/j.ejphar.2009.04.064
  28. Fridovich I. Biological effects of the superoxide radical. Arch. Biochem. Biophys. 247: 1-11 (1986) https://doi.org/10.1016/0003-9861(86)90526-6
  29. de Freitas RB, Augusti PR, de Andrade ER, Rother FC, Rovani BT, Quatrin A, Alves NM, Emanuelli T, Bauermann LF. Black grape juice protects spleen from lipid oxidation induced by gamma radiation in rats. J. Food Biochem. 38: 119-127 (2014) https://doi.org/10.1111/j.1745-4514.2012.00651.x
  30. Pratheeshkumar P, Kuttan G. Protective role of Vernonia cinerea L. against gamma radiation-induced immunosuppression and oxidative stress in mice. Hum. Exp. Toxicol. 30: 1022-1038 (2011) https://doi.org/10.1177/0960327110385959
  31. Wang SW, Wang YJ, Su YJ, Zhou WW, Yang SG, Zhang R, Zhao M, Li YN, Zhang ZP, Zhan DW, Liu RT. Rutin inhibits ${\beta}$-amyloid aggregation and cytotoxicity, attenuates oxidative stress, and decreases the production of nitric oxide and proinflammatory cytokines. Neurotoxicology 33: 482-490 (2012) https://doi.org/10.1016/j.neuro.2012.03.003
  32. Park YS, Kim YG, Chang JC, Kim DY. Radioprotective effects of red ginseng extracts on antioxidants and lipid peroxidation of the liver in ${\gamma}$-irradiated mice. Korean Biochem. J. 26: 184-191 (1993)
  33. Emeric J, Edeas M, Bricaire F. Neurodegenerative diseases and oxidative stress. Biomed. Pharmacother. 58: 39-46 (2003)
  34. Kim HH, Jang YY, Han ES, Lee CS. Differential antioxidant effects of ambroxol, rutin, glutathione and harmaline. J. Appl. Pharmacol. 7: 112-120 (1999)