Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.6.708

The Effect of Ionizing Radiation on the Ultrastructural Changes and Mechanism on the Cytoplasmic Organelles  

Lee, Moo Seok (Department of Nuclear Medicine, Pusan National University Hospital)
Lee, Jong Kyu (Department of Physics, Pukyong National University)
Nam, Ji Ho (Department of Radiation Oncology, Pusan National University Yangsan Hospital)
Ha, Tae Yeong (Department of Radiation Oncology, Pusan National University Yangsan Hospital)
Lim, Yeong Hyeon (Department of Nuclear Medicine, Research Institute for Convergence of biomedical science and technology Pusan National University Yangsan Hospital)
Kil, Sang Hyeong (Department of Nuclear Medicine, Research Institute for Convergence of biomedical science and technology Pusan National University Yangsan Hospital)
Publication Information
Journal of Life Science / v.27, no.6, 2017 , pp. 708-725 More about this Journal
Abstract
Ionizing radiation is enough energy to interact with matter to remove orbital electrons, neutrons, and protons in the atom. Ionizing radiation like this leads to oxidizing metabolism that alter molecular structure through direct and indirect interactions of radiation with the deoxyribonucleic acid in the nucleus and cytoplasmic organelles or via products of cytoplasm radiolysis. These ionization can result in tissue damage and disruption of cellular function at the molecular level. Consequently, ionizing radiation-induced modifications of ion channels and transporters have been reported. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Also, Reactive oxygen species formed on the effect of ionizing radiation can get across into neighboring cells through the cell junctions that are responsible for intercellular chemical communication, and may there bring about changes characteristic to radiation damage. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. This paper briefly reviewed reports on ionization radiation effects on cellular level that support the concept of radiation biology. A better understanding of the biological effects of ionizing radiation will lead to better use of and better protection from radiation.
Keywords
Cytoplasmic organelles; ionizing radiation; radiation damage; reactive oxygen species;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gire, V. and Dulic, V. 2015. Senescence from G2 arrest, revisited. Cell Cycle 14, 297-304.   DOI
2 Haimovitz-Friedman, A., Kan, C. C., Ehleiter, D., Persaud, R. S., McLoughlin, M., Fuks, Z. and Kolesnick, R. N. 1994. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J. Exp. Med. 180, 525-535.   DOI
3 Han, W. and Yu, K. N. 2009. Response of cells to ionizing radiation, pp. 204-262., Advances in biomedical sciences and engineering. Edited by SC Tjong. Bentham Science Publishers, Ltd.: Hong Kong, China.
4 Harding, H. P., Calfon, M., Urano, F., Novoa, I. and Ron, D. 2002. Transcriptional and translational control in the mammalian unfolded protein response. Annu. Rev. Cell Dev. Biol. 18, 575-599.   DOI
5 Azzam, E. I., Jay-Gerin, J. P. and Pain, D. 2012. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 327, 48-60.   DOI
6 Balda, M. S. and Matter, K. 1998. Tight junctions. J. Cell Sci. 111, 541-547.
7 Balaban, R. S., Nemoto, S. and Finkel, T. 2005. Mitochondria, oxidants, and aging. Cell. 120, 483-495.   DOI
8 Baverstock, K. 2000. Radiation-induced genomic instability: a paradigm-breaking phenomenon and its relevance to environmentally induced cancer. Mutat. Res. 454, 89-109.   DOI
9 Bernhard, E. J., Maity, A., Muschel, R. J. and McKenna, W. G. 1995. Effects of ionizing radiation on cell cycle progression. Radiat. Environ. Biophys. 34, 79-83.   DOI
10 Cortopassi, G. A. and Arnheim, N. 1990. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res. 18, 6927-6933.   DOI
11 Cortopassi, G. A., Shibata, D., Soong, N. W. and Arnheim, N. 1992. A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc. Natl. Acad. Sci. USA 89, 7370-7374.   DOI
12 Duchen, M. R. 2004. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol. Aspects Med. 25, 365-451.   DOI
13 Crews, C. M. and Erikson, R. L. 1993. Extracellular signals and reversible protein phosphorylation: what to Mek of it all. Cell. 74, 215-217.
14 Deckbar, D., Jeggo, P. A. and Lobrich, M. 2011. Understanding the limitations of radiation-induced cell cycle checkpoints. Crit. Rev. Biochem. Mol. Biol. 46, 271-283.   DOI
15 Deshpande, A., Goodwin, E. H., Bailey, S. M., Marrone, B. L. and Lehnert, B. T. 1996. Alpha-particle-induced sister chromatid exchange in normal human lung fibroblasts: Evidence for an extranuclear target. Radiat. Res. 145, 260-267.   DOI
16 Fernandez Silva, P., Enriquez, J. A. and Montoya, J. 2003. Replication and transcription of mammalian mitochondrial DNA. Exp. Physiol. 88, 41-56.   DOI
17 Gerhard, G. S., Benko, F. A., Allen, R. G., Tresini, M., Kalbach, A., Cristofalo, V. J. and Gocke, C. D. 2002. Mitochondrial DNA mutation analysis in human skin fibroblasts from fetal, young, and old donors. Mech. Ageing Dev. 123, 155-166.   DOI
18 Murphy, M. P. 2009. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1-13.   DOI
19 Mori, K., Kawahara, T., Yoshida, H., Yanagi, H. and Yura, T. 1996. Signalling from endoplasmic reticulum to nucleus: transcription factor with a basic leucine zipper motif is required for the unfolded protein response pathway. Genes Cells 1, 803-817.   DOI
20 Morishima, N., Nakanishi, K., Tsuchiya, K., Shibata, T. and Seiwa, E. 2004. Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of caspase-12 during ER stress-induced apoptosis. J. Biol. Chem. 279, 50375-50381.   DOI
21 Nias, A. H. W. 1998. An introduction to radiobiology. pp.81-97, 2nd ed., John Wiley & Sons Ltd: Baffins Lane, Chichester, West Sussex PO19 1UD, England.
22 Nishitoh, H., Saitoh, M., Mochida, Y., Takeda, K., Nakano, H., Rothe, M. and Ichijo, H., et al. 1998. ASK1 is essential for JNK/SAPK activation by TRAF2. Mol. Cell. 2, 389-395.   DOI
23 Norbury, C. and Nurse, P. 1992. Animal cell cycles and their control. Annu. Rev. Biochem. 61, 441-468.   DOI
24 Palikaras, K. and Tavernarakis, N. 2014. Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp. Gerontol. 56, 182-188.   DOI
25 Nugent, S., Mothersill, C. E., Seymour, C., McClean, B., Lyng, F. M. and Murphy, J. E. 2010. Altered mitochondrial function and genome frequency post exposure to ${\gamma}$-radiation and bystander factors. Int. J. Radiat. Biol. 86, 829-841.   DOI
26 Oberley, L. W. and Buettner, G. R. 1979. Role of superoxide dismutase in cancer: a review. Cancer Res. 39, 1141-1149.
27 Ojima, M., Ishii, K., Hayashi, T. and Ito, A. 2000. Induction of radio-adaptive response in colony formation by low dose X-ray irradiation. Physiol. Chem. Phys. Med. NMR. 33, 41-48.
28 Paunesku, T., Haley, B., Brooks, A. and Woloschak, G. E. 2017. Biological basis of radiation protection needs rejuvenation. Int. J. Radiat. Biol. 13, 1-8.
29 Pawlik, T. M. and Keyomarsi, K. 2004. Role of cell cycle in mediating sensitivity to radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 59, 928-942.   DOI
30 Petkau, A. 1987. Role of superoxide dismutase in modification of radiation injury. Br. J. Cancer Suppl. 8, 87.
31 Platzman, R. L. 1958. Radiation Biology and Medicine. Selected Reviews in the Life Sciences. pp. 15-72, Addison-Wesley Pub. Co: Boston, USA.
32 Porvaznik, M. 1979. Tight junction disruption and recovery after sublethal ${\gamma}$ irradiation. Radiat. Res. 78, 233-250.   DOI
33 Prise, K. M. and O'sullivan, J. M. 2009. Radiation-induced bystander signalling in cancer therapy. Nat. Rev. Cancer 9, 351-360.   DOI
34 Richter, C., Park, J. W. and Ames, B. N. 1988. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA 85, 6465-6467.   DOI
35 Prithivirajsingh, S., Story, M. D., Bergh, S. A., Geara, F. B., Kian Ang, K., Ismail, S. M. and Brock, W. A., et al. 2004. Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation. FEBS Lett. 571, 227-232.   DOI
36 Reisz, J. A., Bansal, N., Qian, J., Zhao, W. and Furdui, C. M. 2014. Effects of ionizing radiation on biological molecules - mechanisms of damage and emerging methods of detection. Antioxid. Redox Signal. 21, 260-292.   DOI
37 Richard, S. M., Bailliet, G., Paez, G. L., Bianchi, M. S., Peltomäki, P. and Bianchi, N. O. 2000. Nuclear and mitochondrial genome instability in human breast cancer. Cancer Res. 60, 4231-4237.
38 Sanche, L. 2009. Biological chemistry: Beyond radical thinking. Nature 461, 358-359.   DOI
39 Shoffner, J. M., Lott, M. T., Voljavec, A. S., Soueidan, S. A., Costigan, D. A. and Wallace, D. C. 1989. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc. Natl. Acad. Sci. USA 86, 7952-7956.   DOI
40 Schon, E. A., Rizzuto, R., Moraes, C. T., Nakase, H., Zeviani, M. and DiMauro, S. 1989. A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science 244, 346-350.   DOI
41 Sidrauski, C., Chapman, R. and Walter, P. 1998. The unfolded protein response: an intracellular signalling pathway with many surprising features. Trends Cell Biol. 8, 245-249.   DOI
42 Simons, K. and Ikonen, E. 1997. Functional rafts in cell membranes. Nature 387, 569.   DOI
43 Somosy, Z., Horvath, G., Telbisz, A., Rez, G. and Palfia, Z. 2002. Morphological aspects of ionizing radiation response of small intestine. Micron 33, 167-178.   DOI
44 Sjostedt, S. and Bezak, E. 2010. Non-targeted effects of ionising radiation and radiotherapy. Australas Phys. Eng. Sci. Med. 33, 219-231.   DOI
45 Somosy, Z., Bognar, G., Horvath, G. and Koteles, G. J. 2003. Role of nitric oxide, cAMP and cGMP in the radiation induced changes of tight junctions in Madin-Darby canine kidney cells. Cell. Mol. Biol. (Noisy-le-grand). 49, 59-63.
46 Somosy, Z., Horvath, G., Bognar, G. and Koteles, G. 2003. Structural and functional changes of cell junctions on effect of ionizing radiation. Acta Biol. Szegediensis 47, 19-25.
47 Somosy, Z. 2000. Radiation response of cell organelles. Micron 31, 165-181.   DOI
48 Schmidt-Ullrich, R. K., Dent, P., Grant, S., Mikkelsen, R. B. and Valerie, K. 2000. Signal transduction and cellular radiation responses. Radiat. Res. 153, 245-257.   DOI
49 Spitz, D. R., Azzam, E. I., Li, J. J. and Gius, D. 2004. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev. 23, 311-322.   DOI
50 Suy, S., Anderson, W. B., Dent, P., Chang, E. and Kasid, U. 1997. Association of Grb2 with Sos and Ras with Raf-1 upon gamma irradiation of breast cancer cells. Oncogene 15, 53-61.   DOI
51 Tamminga, J. and Kovalchuk, O. 2011. Role of DNA damage and epigenetic DNA methylation changes in radiation- induced genomic instability and bystander effects in germline in vivo. Curr. Mol. Pharmacol. 4, 115-125.   DOI
52 Xu, Y., Krishnan, A., Wan, X. S., Majima, H., Yeh, C. C., Ludewig, G. and Clair, D. K. S. 1999. Mutations in the promoter reveal a cause for the reduced expression of the human manganese superoxide dismutase gene in cancer cells. Oncogene 18, 93-102.   DOI
53 Thiagarajah, J. R., Gourmelon, P., Griffiths, N. M., Lebrun, F., Naftalin, R. J. and Pedley, K. C. 2000. Radiation induced cytochrome c release causes loss of rat colonic fluid absorption by damage to crypts and pericryptal myofibroblasts. Gut 47, 675-684.   DOI
54 Wang, L., Kuwahara, Y., Li, L., Baba, T., Shin, R. W., Ohkubo, Y. and Fukumoto, M., et al. 2007. Analysis of Common Deletion (CD) and a novel deletion of mitochondrial DNA induced by ionizing radiation. Int. J. Radiat. Biol. 83, 433-442.   DOI
55 Wu, J., Harrison, J. K., Dent, P., Lynch, K. R., Weber, M. J. and Sturgill, T. W. 1993. Identification and characterization of a new mammalian mitogen-activated protein kinase kinase, MKK2. Mol. Cell. Biol. 13, 4539-4548.   DOI
56 Yakes, F. M. and Van Houten, B. 1997. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. USA 94, 514-519.   DOI
57 Yamamori, T., Sasagawa, T., Ichii, O., Hiyoshi, M., Bo, T., Yasui, H. and Inanami, O., et al. 2017. Analysis of the mechanism of radiation-induced upregulation of mitochondrial abundance in mouse fibroblasts. J. Radiat. Res. 58, 292-301.
58 Yamashita, S., Taguchi, M., Baldacchino, G. and Katsumura, Y. 2010. Radiation chemistry of liquid water with heavy ions: steady-state and pulse radiolysis studies, pp. 325-354, Taylor & Francis: Boca Raton, NY, USA.
59 Yorimitsu, T., Nair, U., Yang, Z. and Klionsky, D. J. 2006. Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem. 281, 30299-30304.   DOI
60 Zhao, Y., Xue, Y., Oberley, T. D., Kiningham, K. K., Lin, S. M., Yen, H. C. and Clair, D. S., et al. 2001. Overexpression of manganese superoxide dismutase suppresses tumor formation by modulation of activator protein-1 signaling in a multistage skin carcinogenesis model. Cancer Res. 61, 6082-6088.
61 Zheng, C. F. and Guan, K. L. 1993. Cloning and characterization of two distinct human extracellular signal-regulated kinase activator kinases, MEK1 and MEK2. J. Biol. Chem. 268, 11435-11439.
62 Zhou, X., Li, N., Wang, Y., Wang, Y., Zhang, X. and Zhang, H. 2011. Effects of X-irradiation on mitochondrial DNA damage and its supercoiling formation change. Mitochondrion 11, 886-892.   DOI
63 Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R. T., Remotti, H. and Ron, D., et al. 1998. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12, 982-995.   DOI
64 Lee, H. C., Yin, P. H., Yu, T. N., Chang, Y. D., Hsu, W. C., Kao, S. Y. and Wei, Y. H., et al. 2001. Accumulation of mitochondrial DNA deletions in human oral tissues-effects of betel quid chewing and oral cancer. Mutat Res Genet Toxicol. Environ. Mutagen. 493, 67-74.   DOI
65 Lin, J. H. C., Yang, J., Liu, S., Takano, T., Wang, X., Gao, Q. and Nedergaard, M., et al. 2003. Connexin mediates gap junction-independent resistance to cellular injury. J. Neurosci. 23, 430-441.   DOI
66 Liu, C. S., Tsai, C. S., Kuo, C. L., Chen, H. W., Lii, C. K., Ma, Y. S. and Wei, Y. H. 2003. Oxidative stress-related alteration of the copy number of mitochondrial DNA in human leukocytes. Free Radic. Res. 37, 1307-1317   DOI
67 Liu, K., Kasper, M., Bierhaus, A., Langer, S., Muller, M. and Trott, K. R. 1997. Connexin 43 expression in normal and irradiated mouse skin. Radiat. Res. 147, 437-441.   DOI
68 Luckey, T. D. 1980. Hormesis with ionizing radiation, pp. 1- 122, CRC press, Inc: Boca Raton, FL, USA.
69 Iliakis, G., Wang, Y. A., Guan, J. and Wang, H. 2003. DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22, 5834-5847.   DOI
70 Lodish, H., Baltimore, D., Berk, A., Zipursky, S. L., Matsudaira, P. and Darnell, J. 1995. Molecular cell biology Vol. 3, pp. 817-819, Scientific American Books: NY, USA.
71 Maity, A., McKenna, W. G. and Muschel, R. J. 1994. The molecular basis for cell cycle delays following ionizing radiation: a review. Radiother Oncol. 31, 1-13.   DOI
72 Lee, H. C., Pang, C. Y., Hsu, H. S. and Wei, Y. H. 1994. Differential accumulations of 4,977 bp deletion in mitochondrial DNA of various tissues in human ageing. Biochim. Biophys. Acta. 1226, 37-43.   DOI
73 Malakhova, L., Bezlepkin, V. G., Antipova, V., Ushakova, T. Y., Fomenko, L., Sirota, N. and Gaziev, A. I. 2005. The increase in mitochondrial DNA copy number in the tissues of ${\gamma}$-irradiated mice. Cell. Mol. Biol. Lett. 10, 721.
74 Matsumoto, M., Minami, M., Takeda, K., Sakao, Y. and Akira, S. 1996. Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells FEBS Lett. 395, 143-147.   DOI
75 May, A. and Bohr, V. A. 2000. Gene-specific repair of ${\gamma}$- ray-induced DNA strand breaks in colon cancer cells: No coupling to transcription and no removal from the mitochondrial genome. Biochem. Biophys. Res. Commun. 269, 433-437.   DOI
76 McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y. and Holbrook, N. J. 2001. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol. 21, 1249- 1259.   DOI
77 Morgan, D. O. 1995. Principles of CDK regulation. Nature 374, 131.   DOI
78 Michel, S., Wanet, A., De Pauw, A., Rommelaere, G., Arnould, T. and Renard, P. 2012. Crosstalk between mitochondrial (dys) function and mitochondrial abundance. J. Cell. Physiol. 227, 2297-2310.   DOI
79 Milhas, D., Clarke, C. J. and Hannun, Y. A. 2010. Sphingomyelin metabolism at the plasma membrane: implications for bioactive sphingolipids. FEBS Lett. 584, 1887-1894.   DOI
80 Moretti, L., Cha, Y. I., Niermann, K. J. and Lu, B. 2007. Switch between apoptosis and autophagy: radiation-induced endoplasmic reticulum stress? Cell Cycle 6, 793-798.   DOI
81 Morgan, W. F. and Sowa, M. B. 2007. Non-targeted bystander effects induced by ionizing radiation. Mutat. Res. 616, 159-164.   DOI
82 Kasper, M., Traub, O., Reimann, T., Bjermer, L., Grossmann, H., Müller, M. and Wenzel, K. W. 1996. Upregulation of gap junction protein connexin43 in alveolar epithelial cells of rats with radiation-induced pulmonary fibrosis. Histochem. Cell Biol. 106, 419-424.   DOI
83 Kam, W. W. Y. and Banati, R. B. 2013. Effects of ionizing radiation on mitochondria. Free Radic. Biol. Med. 65, 607-619.   DOI
84 Kam, W. W. Y., McNamara, A. L., Lake, V., Banos, C., Davies, J. B., Kuncic, Z. and Banati, R. B. 2013. Predicted ionisation in mitochondria and observed acute changes in the mitochondrial transcriptome after gamma irradiation: a Monte Carlo simulation and quantitative PCR study. Mitochondrion 13, 736-742.   DOI
85 Kasid, U., Suy, S., Dent, P. and Ray, S. 1996. Activation of Raf by ionizing radiation. Nature 382, 813.   DOI
86 K Hei, T., Zhou, H., Chai, Y., Ponnaiya, B. and N Ivanov, V. 2011. Radiation induced non-targeted response: mechanism and potential clinical implications. Curr. Mol. Pharmacol. 4, 96-105.   DOI
87 Kryston, T. B., Georgiev, A. B., Pissis, P. and Georgakilas, A. G. 2011. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat. Res. 711, 193-201.   DOI
88 Larner, J. M., Lee, H. and Hamlin, J. L. 1996. S phase damage sensing checkpoints in mammalian cells. Cancer Surv. 29, 25-45.
89 Larsen, N. B., Rasmussen, M. and Rasmussen, L. J. 2005. Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 5, 89-108.   DOI
90 LaVerne, J. A. 2004. Charged Particle and Photon Interactions with Matter, pp. 403-429, Marcel Dekker, Inc: Madison Avenue, NY, USA.
91 Leach, J. K., Van Tuyle, G., Lin, P. S., Schmidt-Ullrich, R. and Mikkelsen, R. B. 2001. Ionizing radiation-induced, mitochondria- dependent generation of reactive oxygen/ nitrogen. Cancer Res. 61, 3894-3901.
92 Attardi, G. and Schatz, G. 1988. Biogenesis of mitochondria. Annu. Rev. Cell Biol. 4, 289-331.   DOI
93 Ames, B. N. 1989. Endogenous DNA damage as related to cancer and aging. Mutat. Res. 214, 41-46.   DOI
94 Ames, B. N. 1989. Endogenous oxidative DNA damage, aging, and cancer. Free Radic. Res. Commun. 7, 121-128.   DOI
95 Amundson, S. A., Bittner, M. and Fornace, A. J. 2003. Functional genomics as a window on radiation stress signaling. Oncogene 22, 5828-5833.   DOI
96 Azzam, E. I., de Toledo, S. M. and Little, J. B. 2003. Oxidative metabolism, gap junctions and the ionizing radiation- induced bystander effect. Oncogene 22, 7050-7057.   DOI
97 Brateman, L. 1999. The AAPM/RSNA Physics Tutorial for Residents: Radiation Safety Considerations for Diagnostic Radiology Personnel 1. J. Digit. Imaging 19, 1037-1055.
98 Bionda, C., Hadchity, E., Alphonse, G., Chapet, O., Rousson, R., Rodriguez-Lafrasse, C. and Ardail, D. 2007. Radioresistance of human carcinoma cells is correlated to a defect in raft membrane clustering. Free Radic. Biol. Med. 43, 681-694.   DOI
99 Bolus, N. E. 2001. Basic review of radiation biology and terminology. J. Nucl. Med. Technol. 29, 67-73.
100 Booher, R. N., Holman, P. S. and Fattaey, A. 1997. Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity. J. Biol. Chem. 272, 22300-22306.   DOI
101 Buonanno, M., De Toledo, S. M. and Azzam, E. I. 2011. Increased frequency of spontaneous neoplastic transformation in progeny of bystander cells from cultures exposed to densely ionizing radiation. PloS One 6, e21540.   DOI
102 Buonanno, M., de Toledo, S. M., Pain, D. and Azzam, E. I. 2011. Long-term consequences of radiation-induced bystander effects depend on radiation quality and dose and correlate with oxidative stress. Radiat. Res. 175, 405-415.   DOI
103 Calabrese, E. J. 2013. Origin of the linearity no threshold (LNT) dose-response concept. Arch. Toxicol. 87, 1621-1633.   DOI
104 Corre, I., Guillonneau, M. and Paris, F. 2013. Membrane signaling induced by high doses of ionizing radiation in the endothelial compartment. Relevance in radiation toxicity. Int J. Mol. Sci. 14, 22678-22696.   DOI
105 Jacobson, K. 2015. Measuring Biological Cell Damage Due to Ionizing Radiation. Honors theses. Paper 75. College of Saint Benedict and Saint John's University, Minnesota, United States.
106 Hetz, C., Bernasconi, P., Fisher, J., Lee, A. H., Bassik, M. C., Antonsson, B. and Korsmeyer, S. J., et al. 2006. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with $IRE1{\alpha}$. Science 312, 572-576.   DOI
107 Hickman, A. W., Jaramillo, R. J., Lechner, J. F. and Johnson, N. F. 1994. ${\alpha}$-Particle-induced p53 protein expression in a rat lung epithelial cell strain. Cancer Res. 54, 5797-5800.
108 Hirai, F., Motoori, S., Kakinuma, S., Tomita, K., Indo, H. P., Kato, H. and Ozawa, T., et al. 2004. Mitochondrial signal lacking manganese superoxide dismutase failed to prevent cell death by reoxygenation following hypoxia in a human pancreatic cancer cell line, KP4. Antioxid. Redox Signal. 6, 523-535.   DOI
109 Hong, M., Xu, A., Zhou, H., Wu, L., Randers-Pehrson, G., Santella, R. M. and Hei, T. K., et al. 2010. Mechanism of genotoxicity induced by targeted cytoplasmic irradiation. Br. J. Cancer. 103, 1263-1268.   DOI
110 Hynes, R. O. 1999. Cell adhesion: old and new questions. Trends Biochem. Sci. 24, M33-M37.   DOI
111 Jay-Gerin, J. P. and Ferradini, C. 2000. Are there protective enzymatic pathways to regulate high local nitric oxide (.NO) concentrations in cells under stress conditions? Biochimie. 82, 161-166.   DOI
112 Jin, P., Gu, Y. and Morgan, D. O. 1996. Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J. Cell Biol. 134, 963-970.   DOI
113 Kadhim, M., Salomaa, S., Wright, E., Hildebrandt, G., Belyakov, O. V., Prise, K. M. and Little, M. P. 2013. Non-targeted effects of ionising radiation-implications for low dose risk. Mutat. Res. Rev. Mutat. Res. 752, 84-98.   DOI