Evaluation of DNA Damage and Repair Kinetics in the Earthworm (Eisenia fetida) Exposed to Radiation and Mercury

방사선과 수은에 의해 유도된 Eisenia fetida 체강세포의 DNA 손상 및 수복 평가

  • Ryu, Tae-Ho (Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute) ;
  • Nili, Mohammad (Dawnesh Radiation Research Institute) ;
  • An, Kwang-Guk (College of Bioscience and Biotechnology, Chungnam National University) ;
  • Kim, Jin-Kyu (Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute)
  • 류태호 (한국원자력연구원 방사선과학연구소) ;
  • 모하마드닐리 (스페인 도네쉬방사선연구소) ;
  • 안광국 (충남대학교 생명시스템과학대학) ;
  • 김진규 (한국원자력연구원 방사선과학연구소)
  • Received : 2011.01.25
  • Accepted : 2011.02.13
  • Published : 2011.02.28

Abstract

The single cell gel electrophoresis (SCGE) assay is a microelectrophoretic technique for assessments of DNA damage at the level of the individual eukaryotic cell. The SCGE assay, due to its simplicity, sensitivity and need of a few cells, has advantages compared to other genomic damage assays such as sister chromatid exchange, chromosomal aberration and micronucleus test. In this study, investigated were the levels of DNA damage and the repair kinetics in the coelomocytes of Eisenia fetida treated with HgCl2 and ionizing radiation by means of the SCGE assay. For detecting DNA damage and repair in coelomocytes, earthworms (E. fetida) were irradiated with six doses of ${\gamma}$-rays (0, 2.5, 5, 10, 20 and 50 Gy) and in vivo exposed to mercuric chloride at 0, 80 and 160 mg $kg^{-1}$ for 48 hours. Then the Olive tail moments were measured during 0~12 hours after irradiation and 0~72 hours after Hg treatment. The results showed that the more the oxidative stress was induced by mercury and radiation, the longer the repair time was required. Also, the results suggest that the SCGE assay may be used as an important tool for comparison of the sensitivity of different species to oxidative stresses.

E. fetida를 방사선과 수은에 각각 노출시킨 후, 체강세포를 추출하고 단세포 겔 전기영동 기법을 이용하여 DNA의 손상정도와 시간의 경과에 따른 수복 양상을 평가해 보았다. 그 결과, 방사선 조사 후의 시간이 경과할수록 대체로 DNA 손상정도가 감소했으며, 12시간 내에 모든 실험군의 DNA가 완전히 수복되었다. 정확한 수복 완료 시간을 알아보기 위해 OTM 값을 대조군과 비교해 보면 2.5와 5Gy는 방사선 조사 후 약 2시간, 10과 20 Gy는 약 3시간, 50 Gy는 약 12시간이 지나자 DNA가 완전히 회복된다고 판단할 수 있었다. 또한 지렁이를 80과 160 mg $kg^{-1}$ 농도의 염화수은(II)에 48시간 동안 노출시킨 후, 수은에 오염되지 않은 깨끗한 배양토에서 72시간을 다시 배양했을 때 손상된 DNA가 완전히 수복되었다. 본 연구 결과는 산화적 스트레스 인자에 대한 생물의 민감도를 측정하는 자료로 제시될 수 있으며, 향후 다양한 생물을 대상으로 실험을 진행한다면 동일한 유전독성 물질에 대한 생물종 간의 감수성을 비교 분석할수 있을 것이다.

Keywords

References

  1. 김기범, RF Lee, KA Maruya. 2003. 어류혈구세포에 있어서 single cell gel electrophoresis를 응용한 DNA single strand break의 측정. 한국수산학회지. 36:346-351.
  2. Busschini A, P Carboni, A Martino, P Poli and C Rossi. 2003. Effects of temperature on baseline and gennotoxicant-induced DNA damage in haemocytes of Dreissena polymorpha. Mutat. Res. 537:81-92. https://doi.org/10.1016/S1383-5718(03)00050-0
  3. Diogene J, M Dufour, GG Poirier and D Nadeau. 1997. Extrusion of earthworm coelomocytes: comparison of the cell populations recovered from the species Lumbricus terrestris, Eisenia fetida and Octolasion tyrtaeum. Lab. Anim. 31:326- 336. https://doi.org/10.1258/002367797780596068
  4. Eyambe GS, AJ Goven, LC Fitzpatrick, BJ Venables and EL Cooper. 1991. A non-invasive technique for sequential collection of earthworm (Lumbricus terrestris) leukocytes during subchronic immunotoxicity studies. Lab. Anim. 25:61-67. https://doi.org/10.1258/002367791780808095
  5. Gudbrandsen M. 2005. The effects of mercuric chloride on survival, growth, reproduction, burrowing speed and glutathione concentrations in the earthworm species Eisenia fetida Savigny. Master's thesis at the University of Oslo. pp. 1-57.
  6. Hertel-Aas T, DH Oughton, A Jaworska, H Bjerke, B Salbu and G Brunborg. 2007. Effects of chronic gamma irradiation on reproduction in the earthworm Eisenia fetida (oligochaeta). Radiat. Res. 168:515-526. https://doi.org/10.1667/RR1012.1
  7. Hirano T and K Tamae. 2010. Heavy metal-induced oxidative DNA damage in earthworms: a review. Appl. Environ. Soil Sci. doi:10.1155/2010/726946. pp. 1-7.
  8. Lankoff A, J Bialczyk, D Dziga, WW Carmichael, I Gradzka, H Lisowska, T Kuszewski, S Gozdz, I Piorun and A Wojcik. 2006. The repair of gamma-radiation-induced DNA damage is inhibited by microcystin-LR, the PP1 and PP2A phosphatase inhibitor. Mutagenesis 21:83-90. https://doi.org/10.1093/mutage/gel002
  9. McKelvey-Martin VJ, MH Green, P Schmezer, BL Pool-Zobel, MP De Meo and A Collins. 1993. The single cell gel electrophoresis assay (comet assay): a European review. Mutat. Res. 288:47-63. https://doi.org/10.1016/0027-5107(93)90207-V
  10. Nakamori T, Y Kubota, T Ban-nai, Y Fujii and S Yoshida. 2009. Effects of acute gamma irradiation on soil invertebrates in laboratory tests. Radioprotection 44:421-424. https://doi.org/10.1051/radiopro/20095079
  11. Olsvik PA, LS Heier, BO Rosseland, HC Teien, B Salbu. 2010. Effects of combined $\gamma$-irradiation and metal (Al+Cd) exposures in Atlantic salmon (Salmo salar L.). J. Environ. Radioac. 101:230-236. https://doi.org/10.1016/j.jenvrad.2009.11.004
  12. Ostling O and KJ Johanson. 1984. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biphys. Res. Commun. 123:291-298. https://doi.org/10.1016/0006-291X(84)90411-X
  13. Simone NL, BP Soule, D Ly, AD Saleh, JE Savage, W DeGraff, J Cook, CC Harris, D Gius and JB Mitchell. 2009. Ionizing Radiation-Induced Oxidative Stress Alters miRNA Expression. PLoS ONE 4:e6377. doi:10.1371/journal.pone.0006377. pp. 1-7.
  14. Singh NP, MT McCoy, RR Tice and EL Schneider. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175:184-191. https://doi.org/10.1016/0014-4827(88)90265-0
  15. UNSCEAR. 1996. Sources and effects of ionizing radiation. 1996 Report to the General Assembly, with Scientific Annex, pp. 1-86. United Nations, New York.
  16. Yu S, W Qin, G Zhuang, X Zhang, G Chen and W Liu. 2009. Monitoring oxidative stress and DNA damage induced by heavy metals in yeast expressing a redox-sensitive green fluorescent protein. Curr. Microbiol. 58:504-510. https://doi.org/10.1007/s00284-008-9354-y