• 제목/요약/키워드: r-Noetherian module

검색결과 77건 처리시간 0.023초

MODULES WHOSE CLASSICAL PRIME SUBMODULES ARE INTERSECTIONS OF MAXIMAL SUBMODULES

  • Arabi-Kakavand, Marzieh;Behboodi, Mahmood
    • 대한수학회보
    • /
    • 제51권1호
    • /
    • pp.253-266
    • /
    • 2014
  • Commutative rings in which every prime ideal is an intersection of maximal ideals are called Hilbert (or Jacobson) rings. We propose to define classical Hilbert modules by the property that classical prime submodules are intersections of maximal submodules. It is shown that all co-semisimple modules as well as all Artinian modules are classical Hilbert modules. Also, every module over a zero-dimensional ring is classical Hilbert. Results illustrating connections amongst the notions of classical Hilbert module and Hilbert ring are also provided. Rings R over which all modules are classical Hilbert are characterized. Furthermore, we determine the Noetherian rings R for which all finitely generated R-modules are classical Hilbert.

COPURE PROJECTIVE MODULES OVER FGV-DOMAINS AND GORENSTEIN PRÜFER DOMAINS

  • Shiqi Xing
    • 대한수학회보
    • /
    • 제60권4호
    • /
    • pp.971-983
    • /
    • 2023
  • In this paper, we prove that a domain R is an FGV-domain if every finitely generated torsion-free R-module is strongly copure projective, and a coherent domain is an FGV-domain if and only if every finitely generated torsion-free R-module is strongly copure projective. To do this, we characterize G-Prüfer domains by G-flat modules, and we prove that a domain is G-Prüfer if and only if every submodule of a projective module is G-flat. Also, we study the D + M construction of G-Prüfer domains. It is seen that there exists a non-integrally closed G-Prüfer domain that is neither Noetherian nor divisorial.

ON THE WEAK ARTINIANNESS AND MINIMAX GENERALIZED LOCAL COHOMOLOGY MODULES

  • Gu, Yan
    • 대한수학회보
    • /
    • 제50권6호
    • /
    • pp.1855-1861
    • /
    • 2013
  • Let R be a commutative Noetherian ring, I an ideal of R, M and N two R-modules. We characterize the least integer i such that $H^i_I(M,N)$ is not weakly Artinian by using the notion of weakly filter regular sequences. Also, a local-global principle for minimax generalized local cohomology modules is shown and the result generalizes the corresponding result for local cohomology modules.

COLOCALIZATION OF GENERALIZED LOCAL HOMOLOGY MODULES

  • Hatamkhani, Marziyeh
    • 대한수학회보
    • /
    • 제59권4호
    • /
    • pp.917-928
    • /
    • 2022
  • Let R be a commutative Noetherian ring and I an ideal of R. In this paper, we study colocalization of generalized local homology modules. We intend to establish a dual case of local-global principle for the finiteness of generalized local cohomology modules. Let M be a finitely generated R-module and N a representable R-module. We introduce the notions of the representation dimension rI(M, N) and artinianness dimension aI(M, N) of M, N with respect to I by rI(M, N) = inf{i ∈ ℕ0 : HIi(M, N) is not representable} and aI(M, N) = inf{i ∈ ℕ0 : HIi(M, N) is not artinian} and we show that aI(M, N) = rI(M, N) = inf{rIR𝔭 (M𝔭,𝔭N) : 𝔭 ∈ Spec(R)} ≥ inf{aIR𝔭 (M𝔭,𝔭N) : 𝔭 ∈ Spec(R)}. Also, in the case where R is semi-local and N a semi discrete linearly compact R-module such that N/∩t>0ItN is artinian we prove that inf{i : HIi(M, N) is not minimax}=inf{rIR𝔭 (M𝔭,𝔭N) : 𝔭 ∈ Spec(R)\Max(R)}.

RELATIVE PROJECTIVITY AND RELATED RESULTS

  • Toroghy, H.Ansari
    • 대한수학회보
    • /
    • 제41권3호
    • /
    • pp.419-426
    • /
    • 2004
  • Let R be a commutative Noetherian ring and let M be an Artinian R-module. Let M${\subseteq}$M′ be submodules of M. Suppose F is an R-module which is projective relative to M. Then it is shown that $Att_{R}$($Hom_{A}$ (F,M′) :$Hom_{A}$(F,M) $In^n$), n ${\in}$N and $Att_{R}$($Hom_{A}$(F,M′) :$Hom_{A}$(F,M) In$^n$ $Hom_{A}$(F,M") :$Hom_{A}$(F,M) $In^n$),n ${\in}$ N are ultimately constant.

A NOTE ON ENDOMORPHISMS OF LOCAL COHOMOLOGY MODULES

  • Mahmood, Waqas;Zahid, Zohaib
    • 대한수학회보
    • /
    • 제54권1호
    • /
    • pp.319-329
    • /
    • 2017
  • Let I denote an ideal of a Noetherian local ring (R, m). Let M denote a finitely generated R-module. We study the endomorphism ring of the local cohomology module $H^c_I(M)$, c = grade(I, M). In particular there is a natural homomorphism $$Hom_{\hat{R}^I}({\hat{M}}^I,\;{\hat{M}}^I){\rightarrow}Hom_R(H^c_I(M),\;H^c_I(M))$$, $where{\hat{\cdot}}^I$ denotes the I-adic completion functor. We provide sufficient conditions such that it becomes an isomorphism. Moreover, we study a homomorphism of two such endomorphism rings of local cohomology modules for two ideals $J{\subset}I$ with the property grade(I, M) = grade(J, M). Our results extends constructions known in the case of M = R (see e.g. [8], [17], [18]).

ARTINIANNESS OF LOCAL COHOMOLOGY MODULES

  • Abbasi, Ahmad;Shekalgourabi, Hajar Roshan;Hassanzadeh-lelekaami, Dawood
    • 호남수학학술지
    • /
    • 제38권2호
    • /
    • pp.295-304
    • /
    • 2016
  • In this paper we investigate the Artinianness of certain local cohomology modules $H^i_I(N)$ where N is a minimax module over a commutative Noetherian ring R and I is an ideal of R. Also, we characterize the set of attached prime ideals of $H^n_I(N)$, where n is the dimension of N.

△-CLOSURES OF IDEALS WITH RESPECT TO MODULES

  • Ansari-Toroghy, H.;Dorostkar, F.
    • 호남수학학술지
    • /
    • 제30권1호
    • /
    • pp.101-113
    • /
    • 2008
  • Let M be an arbitrary module over a commutative Noetherian ring R and let ${\triangle}$ be a multiplicatively closed set of non-zero ideals of R. In this paper, we will introduce the dual notion of ${\triangle}$-closure and ${\triangle}$-dependence of an ideal with respect to M and obtain some related results.

ON THE TOP LOCAL COHOMOLOGY AND FORMAL LOCAL COHOMOLOGY MODULES

  • Shahram, Rezaei;Behrouz, Sadeghi
    • 대한수학회보
    • /
    • 제60권1호
    • /
    • pp.149-160
    • /
    • 2023
  • Let 𝖆 and 𝖇 be ideals of a commutative Noetherian ring R and M a finitely generated R-module of finite dimension d > 0. In this paper, we obtain some results about the annihilators and attached primes of top local cohomology and top formal local cohomology modules. In particular, we determine Ann(𝖇 Hd𝖆(M)), Att(𝖇 Hd𝖆(M)), Ann(𝖇𝔉d𝖆(M)) and Att(𝖇𝔉d𝖆(M)).

ASSOCIATED PRIME SUBMODULES OF A MULTIPLICATION MODULE

  • Lee, Sang Cheol;Song, Yeong Moo;Varmazyar, Rezvan
    • 호남수학학술지
    • /
    • 제39권2호
    • /
    • pp.275-296
    • /
    • 2017
  • All rings considered here are commutative rings with identity and all modules considered here are unital left modules. A submodule N of an R-module M is said to be extended to M if $N=aM$ for some ideal a of R and it is said to be fully invariant if ${\varphi}(L){\subseteq}L$ for every ${\varphi}{\in}End(M)$. An R-module M is called a [resp., fully invariant] multiplication module if every [resp., fully invariant] submodule is extended to M. The class of fully invariant multiplication modules is bigger than the class of multiplication modules. We deal with prime submodules and associated prime submodules of fully invariant multiplication modules. In particular, when M is a nonzero faithful multiplication module over a Noetherian ring, we characterize the zero-divisors of M in terms of the associated prime submodules, and we show that the set Aps(M) of associated prime submodules of M determines the set $Zdv_M(M)$ of zero-dvisors of M and the support Supp(M) of M.