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ON THE TOP LOCAL COHOMOLOGY AND FORMAL

LOCAL COHOMOLOGY MODULES

Shahram Rezaei and Behrouz Sadeghi

Abstract. Let a and b be ideals of a commutative Noetherian ring R and

M a finitely generated R-module of finite dimension d > 0. In this paper,
we obtain some results about the annihilators and attached primes of

top local cohomology and top formal local cohomology modules. In par-
ticular, we determine Ann(bHd

a(M)), Att(bHd
a(M)), Ann(bFd

a(M)) and

Att(bFd
a(M)).

1. Introduction

Throughout this paper, R is a commutative Noetherian ring with identity,
a is an ideal of R and M is a finitely generated R-module of finite dimension
d > 0. Recall that the i-th local cohomology module of M with respect to a is
denoted by Hi

a(M). For basic facts about local cohomology refer to [7]. Let a be
an ideal of a local ring (R,m) and M a finitely generated R-module. For each
i ≥ 0; Fi

a(M) := lim←−
n

Hi
m(M/anM) is called the i-th formal local cohomology of

M with respect to a.
The basic properties of formal local cohomology modules are found in [1],

[6], [10] and [14].
An important problem concerning local cohomology is determining the an-

nihilators of the i-th local cohomology module Hi
a(M). This problem has been

studied by several authors, see for example [2], [3], [4] and [5]. In [5], Bahman-
pour et al. proved that if (R,m) is a complete local ring, then

Ann(Hdim(M)
m (M)) = Ann(M/TR(M)),

where TR(M) = ∪{N : N ≤M and dimN < dimM}.
More recently, Atazadeh et al. in [2] generalized this main result by deter-

mining Ann(Hdim(M)
a (M)) for an arbitrary Noetherian ring R. In [2, Theorem

2.3], by using the above main result, they proved the following main theorem.
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Theorem 1.1 ([2, Theorem 2.3]). Let a be an ideal of a Noetherianl ring R and

M a non-zero finitely generated R-module such that Hdim(M)
a (M) 6= 0. Then

Ann(Hdim(M)
a (M)) = Ann(M/TR(a,M)),

where TR(a,M) = ∪{N : N ≤M and cd(a, N) < cd(a,M)}.

As a main result in the first section, we determine the annihilators and at-

tached primes of top local cohomology module bHdim(M)
a (M) for two arbitrary

ideals a and b of an arbitrary Noetherian ring R. In fact, we prove the following
theorem, which is a generalization of [2, Theorem 2.3].

Theorem 1.2. Let a and b be ideals of a Noetherian ring R and M a finitely
generated R-module. Let d := dimM and bHd

a(M) 6= 0. Then

Ann(bHd
a(M)) = Ann(bM/(bM ∩ TR(a,M))),

where TR(a,M) = ∪{N : N ≤M and cd(a, N) < cd(a,M)}.

We obtain several corollaries of the above result. Among other things, in
the following, we determine the set of attached primes of bHdimM

a (M).

Corollary 1.3. Let a and b be ideals of a Noetherian ring R and M a finitely
generated R-module. Let d := dimM . If bHd

a(M) 6= 0, then

Att(bHd
a(M)) = {p ∈ Assh(bM) : cd(a, R/p) = d}.

In Section 3, we obtain some results about the annihilators and attached
primes of formal local cohomology modules. In the first main result, we will
prove the following theorem which is an extension of [13, Theorem 1.2].

Theorem 1.4. Let a and b be ideals of a local ring (R,m) and M a finitely
generated R-module. of finite dimension d and bFd

a(M) 6= 0. Then

Ann(bFd
a(M)) = Ann(bM/UR(a, bM)),

where UR(a, bM) is the largest submodule of bM such that

dim(UR(a, bM)/aUR(a, bM)) < d.

In the another main result in Section 3, we determine the set of attached
primes of bFdimM

a (M). More precisely, we will prove the following result, which
is an extension of [6, Theorem 3.1]:

Corollary 1.5. Let a and b be ideals of a local ring (R,m) and M a finitely
generated R-module of finite dimension d. If bFd

a(M) 6= 0, then

Att(bFd
a(M)) = {p ∈ Ass(bM) : dim(R/p) = d, p ⊇ a}.
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2. Annihilators and attached primes of top local cohomology
modules

A non-zero R-module M is called secondary if its multiplication map by any
element a of R is either surjective or nilpotent. A secondary representation for
an R-module M is an expression for M as a finite sum of secondary submodules.
If such a representation exists, we will say that M is representable. A prime
ideal p of R is said to be an attached prime of M if p = (N :R M) for some
submodule N of M . If M admits a reduced secondary representation, M =
S1 + S2 + · · · + Sn, then the set of attached primes Att(M) of M is equal to
{
√

0 :R Si : i = 1, . . . , n} (see [12]). Yassemi [16] defined the cosupport of an
R-module M , denoted by Cosupp(M), to be the set of primes p such that there
exists a cocyclic homomorphic image L of M with Ann(L) ⊆ p. It is well known
that in case M is an Artinian R-module the equality Cosupp(M) = V(AnnM)
is true.

A prime ideal p is called coassociated to a non-zero R-module M if there
is a cocyclic homomorphic image T of M with p = AnnT [16]. The set of
coassociated primes of M is denoted by Coass(M). In [16] we can see that
Coass(M) ⊆ Cosupp(M) and every minimal element of the set Cosupp(M)
belongs to Coass(M).

For the following proofs we need the following two next lemmas.

Lemma 2.1. Let R be a Noetherian ring, a an ideal of R and M and N be two
finitely generated R-modules such that SuppN ⊆ SuppM . Then cd(a, N) ≤
cd(a,M).

Proof. See [9, Theorem 2.2]. �

Lemma 2.2. Let R be a Noetherian ring, a an ideal of R and M an R-module.
Then Coass(aM) ⊆ CoassM .

Proof. Since aM is a homomorphic image of a ⊗R M , we have Coass(aM) ⊆
Coass(a⊗R M). On the other hand, by [16, Theorem 1.21] Coass(a⊗R M) ⊆
CoassM . Thus we conclude that Coass(aM) ⊆ CoassM . �

Theorem 2.3. Let a and b be ideals of a Noetherian ring R and M a finitely
generated R-module. Let d := dimM . Then bHd

a(M) = 0 if and only if

Hd
a(bM) = 0.

Proof. If cd(a,M) < d, then Hd
a(M) = 0 and so bHd

a(M) = 0. Also, by Lemma

2.1 cd(a, bM) ≤ cd(a,M) < d and it follows that Hd
a(bM) = 0. Thus, we as-

sume that cd(a,M) = d. If bHd
a(M) = 0, then b ⊆ Ann(Hd

a(M)). By Theorem

1.1, Ann(Hd
a(M)) = Ann(M/TR(a,M)) where TR(a,M) = ∪{N : N ≤ M and

cd(a, N) < cd(a,M)}. Thus bM ⊆ TR(a,M) and so cd(a, bM) < cd(a,M).

Since cd(a,M) = d we conclude that cd(a, bM) < d and so Hd
a(bM) = 0. Con-

versely, assume that Hd
a(bM) = 0. Thus cd(a, bM) < d = cd(a,M) and so
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bM ⊆ TR(a,M). It follows that b ⊆ Ann(M/TR(a,M)) = Ann(Hd
a(M)) and

bHd
a(M) = 0. �

Corollary 2.4. Let a and b be ideals of a Noetherian ring R and M a finitely
generated R-module. Let d := dimM . If bHd

a(M) 6= 0, then Hd
a(bM) 6= 0

and cd(a,M) = cd(a, bM) = dim(bM) = d and so Hd
a(bM) is an Artinian

R-module.

Proof. Since bHd
a(M) 6= 0 we have Hd

a(M) 6= 0 and so cd(a,M) = d. The-

orem 2.3 implies that Hd
a(bM) 6= 0. Thus d ≤ cd(a, bM). But cd(a, bM) ≤

dim(bM) ≤ d. Therefore

cd(a,M) = cd(a, bM) = dim(bM) = d.

Since dim(bM) = d by using [7, 7.1.7] we conclude that Hd
a(bM) is an Artinian

R-module and the proof is complete. �

Theorem 2.5. Let a and b be ideals of a Noetherian ring R and M a finitely
generated R-module. Let d := dimM . Then Ann(bHd

a(M)) = Ann(Hd
a(bM)).

Proof. If bHd
a(M) = 0, then by Theorem 2.3, Hd

a(bM) = 0 and the result

follows in this case. Now, assume that bHd
a(M) 6= 0. By Corollary 2.4 we have

cd(a,M) = cd(a, bM) = dim(bM) = d.

If u ∈ Ann(bHd
a(M)), then ubHd

a(M) = 0 and so ub ⊆ Ann(Hd
a(M)). But, by

Theorem 1.1, Ann(Hd
a(M)) = AnnM/T where T = ∪{N ≤ M : cd(a, N) <

cd(a,M) = d}. It follows that ubM ⊆ T and so cd(a, ubM) < cd(a,M).
Hence cd(a, ubM) < d. On the other hand, dim(bM) = cd(a, bM) = d and so

by Theorem 1.1 Ann(Hd
a(bM)) = Ann(bM/W ) where

W = ∪{N ≤ bM : cd(a, N) < cd(a, bM) = d}.

Since cd(a, ubM) < d we get u ∈ Ann(bM/W ) = Ann(Hd
a(bM)). Conversely,

assume that u ∈ Ann(Hd
a(bM)) = Ann(bM/W ). Thus ubM ≤ W and so

cd(a, ubM) < d. We can see that ubM ≤ T and thus ub ⊆ Ann(M/T ) =

Ann(Hd
a(M)). Therefore ubHd

a(M) = 0 and it follows that u ∈ Ann(bHd
a(M)),

as required. �

Corollary 2.6. Let a and b be ideals of a Noetherian ring R and M a finitely
generated R-module. Let d := dimM and bHd

a(M) 6= 0. Then bHd
a(M) is not

finitely generated.

Proof. Assume that bHd
a(M) is finitely generated. Since bHd

a(M) is an Ar-

tinian R-module it follows that bHd
a(M) has finite length. Thus there exist

n ∈ N and maximal ideals m1, . . . ,mn of R such that m1 · · ·mn · bHd
a(M) = 0.

By Theorem 2.5 we conclude that m1 · · ·mn ⊆ Ann(Hd
a(bM)). But by Corol-

lary 2.4, Hd
a(bM) is Artinian and so by [15, Theorem 7.30] Hd

a(bM) is finitely
generated which is a contradiction by [11, Remark 2.5]. �
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Proposition 2.7. Let a and b be ideals of a Noetherian ring R and M a finitely
generated R-module. Let d := dimM and bHd

a(M) 6= 0. Then TR(a, bM) =
bM ∩ TR(a,M).

Proof. Since bHd
a(M) 6= 0 we have Hd

a(M) 6= 0 and so cd(a,M) = d. On the

other hand, Theorem 2.3 implies that Hd
a(bM) 6= 0 and thus cd(a, bM) = d.

By definition, TR(a, bM) is the largest submodule of bM such that

cd(a, TR(a, bM)) < cd(a, bM) = d.

But, bM ∩ TR(a,M) is a submodule of bM and by Lemma 2.1

cd(a, bM ∩ TR(a,M)) ≤ cd(a, TR(a,M)) < d.

It follows that bM∩TR(a,M) ⊆ TR(a, bM). Conversely, TR(a,M) is the largest
submodule of M such that cd(a, TR(a,M)) < cd(a,M) = d. Thus TR(a, bM) ⊆
TR(a,M). But TR(a, bM) ⊆ bM . Therefore TR(a, bM) ⊆ bM ∩ TR(a,M), as
required. �

Theorem 2.8. Let a and b be ideals of a Noetherian ring R and M a finitely
generated R-module. Let d := dimM and bHd

a(M) 6= 0. Then

Ann(bHd
a(M)) = Ann(bM/(bM ∩ TR(a,M))).

Proof. By Theorem 2.5 and Theorem 1.1 we have

Ann(bHd
a(M)) = Ann(Hd

a(bM)) = Ann(bM/TR(a, bM)).

Now, the result follows by Proposition 2.7. �

Remark 2.9. Let R be a Noetherian ring, a an ideal of R, and M a non-zero
finitely generated R-module with finite cohomological dimension c := cd(a,M).
By [3, Proposition 2.3] we have

TR(a,M) = ∩cd(a,R/pj)=cNj ,

where 0 = ∩nj=1Nj is a reduced primary decomposition of the zero submodule
0 in M and Nj is a pj-primary submodule of M .

Corollary 2.10. Let a and b be ideals of a Noetherian ring R and M a finitely
generated R-module. Let d := dimM and bHd

a(M) 6= 0. Then

Ann(bHd
a(M)) = Ann(bM/(bM ∩ (∩cd(a,R/pj)=dNj))),

where 0 = ∩nj=1Nj is a reduced primary decomposition of the zero submodule 0
in M and Nj is a pj-primary submodule of M .

Proof. The result follows by Theorem 2.8 and Remark 2.9. �

Corollary 2.11. Let a and b be ideals of a Noetherian ring R and M a finitely
generated R-module. Let d := dimM and bHd

a(M) 6= 0. Then Ann(bHd
a(M))

= Ann(bM) whenever AssM ⊆ {p ∈ SuppM : cd(a, R/p) = d}.

Proof. Assumption implies that TR(a,M) = 0 and the result follows by Theo-
rem 2.8. �
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Corollary 2.12. Let a and b be ideals of a Noetherian ring R. Let d := dimR
and bHd

a(R) 6= 0. Then

Ann(bHd
a(R)) = Ann(b/(b ∩ TR(a, R))) = Ann(b/(b ∩ (∩cd(a,R/pj)=dqj))),

where 0 = ∩nj=1qj is a reduced primary decomposition of the zero ideal of R, qj
is a pj-primary ideal of R for all 1 ≤ j ≤ n.

Proof. The result follows by Theorem 2.8 and Corollary 2.10. �

Corollary 2.13. Let a and b be ideals of a Noetherian domain R. Let d :=
dimR and bHd

a(R) 6= 0. Then Ann(bHd
a(R)) = Ann b.

Proof. Since AssR = 0 we can see that TR(a, R) = 0. Thus, by using Corollary
2.12 we have

Ann(bHd
a(R)) = Ann(b/(b ∩ TR(a, R))) = Ann(b),

as required. �

Corollary 2.14. Let a and b be ideals of a Noetherian ring R and M a finitely
generated R-module. Let d := dimM . If bHd

a(M) 6= 0, then

Cosupp(bHd
a(M)) = Supp(bM/(bM ∩ TR(a,M))).

Proof. By [7, Exercise 7.1.7] Hd
a(M) is Artinian. Thus bHd

a(M) is Artinian

and so by [16, Proposition 2.3] Cosupp(bHd
a(M)) = V(Ann(bHd

a(M)) and by
Theorem 2.8

V(Ann(bHd
a(M))) = V(Ann(bM/(bM ∩ TR(a,M))))

= Supp(bM/(bM ∩ TR(a,M)))

and this completes the proof. �

Theorem 2.15. Let a and b be ideals of a Noetherian ring R and M a finitely
generated R-module. Let d := dimM . Then

Att(bHd
a(M)) = Att(Hd

a(bM)).

Proof. If bHd
a(M) = 0, by Theorem 2.3 we conclude that Att(bHd

a(M)) =

Att(Hd
a(bM)) = φ and the result follows in this case. So, assume that bHd

a(M)
6= 0. By Lemma 2.2 and [8, Theorem 2.5]

Att(bHd
a(M)) ⊆ Att(Hd

a(M)) = {p ∈ AsshM : cd(a, R/p) = d}.
Thus, we conclude that

Att(bHd
a(M)) = Min Att(bHd

a(M)).

Since for an Artinian R-module A the set of all minimal prime ideals containing
AnnA is exactly the set of all minimal elements of AttA, by using Theorem
2.5 it follows that

Att(bHd
a(M)) = Min V(Ann(bHd

a(M))) = Min V(Ann(Hd
a(bM))).
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But, by Corollary 2.4 dim(bM) = d and so by [8, Theorem 2.5] we have

Min V(Ann(Hd
a(bM))) = Att(Hd

a(bM))

and the proof is complete. �

Corollary 2.16. Let a and b be ideals of a Noetherian ring R and M a finitely
generated R-module. Let d := dimM . If bHd

a(M) 6= 0, then

Att(bHd
a(M)) = {p ∈ Assh(bM) : cd(a, R/p) = d}.

In particular, if bHd
m(M) 6= 0, then Att(bHd

m(M)) = Assh(bM).

Proof. By Corollary 2.4 cd(a, bM) = dim(bM) = d and so by [8, Theorem 2.5]

Att(Hd
a(bM)) = {p ∈ Assh(bM) : cd(a, R/p) = d}.

Now the result follows by Theorem 2.15. �

3. Annihilators and attached primes of top formal local
cohomology modules

In this section, we assume that (R,m) is a Noetherian local ring. The main
results in this section are Theorems 3.7 and 3.13. We begin with:

Definition 3.1. Let a be an ideal of R and M be a non-zero finitely generated
R-module. We denote by UR(a,M) the largest submodule of M such that
dim(UR(a,M)/aUR(a,M)) < dim(M/aM). One can check that

UR(a,M) = ∪{N : N 6M and dim(N/aN) < dim(M/aM)}.

The following theorem is a main result of [13] about the annihilators of the
top formal local cohomology modules and plays a key role in the proof of main
results.

Theorem 3.2 ([13, Theorem 1.2]). Let a be an ideal of a Noetherian local ring
(R,m) and M a finitely generated R-module of finite dimension d such that
Fd
a(M) 6= 0. Then

Ann(Fd
a(M)) = Ann(M/UR(a,M)).

Here, by using the above result we calculate

Ann(bFdimM
a (M)) and Att(bFdimM

a (M)).

Theorem 3.3. Let a and b be ideals of a local ring (R,m) and M a finitely
generated R-module of finite dimension d. Then bFd

a(M) = 0 if and only if
Fd
a(bM) = 0.

Proof. If dim(M/aM) < d, then dim(bM/abM) < d and so by [14, Theorem
4.5] bFd

a(M) = Fd
a(bM) = 0. Thus we can assume that dim(M/aM) = d.

Assume that Fd
a(bM) = 0. Since dim(bM/abM) ≤ dim(M/aM) = d, by

[14, Theorem 4.5] it follows that dim(bM/abM) < d. Therefore

bM ⊆ U = ∪{N ≤M : dimN/aN < d},
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and so by Theorem 3.2 b ⊆ Ann(M/U) = AnnFd
a(M). Thus bFd

a(M) = 0.
Conversely, if bFd

a(M) = 0, then b ⊆ AnnFd
a(M) = Ann(M/U). It follows

that bM ⊆ U and so dim(bM/abM) < d. Now [14, Theorem 4.5] implies that
Fd
a(bM) = 0. �

Corollary 3.4. Let a and b be ideals of a local ring (R,m) and M a finitely
generated R-module of finite dimension d. If bFd

a(M) 6= 0, then Fd
a(bM) 6= 0

and dim(M/aM) = dim(bM/abM) = dim(bM) = d.

Proof. bFd
a(M) 6= 0 implies that Fd

a(M) 6= 0 and so dim(M/aM) = d by [14,
Theorem 4.5]. On the other hand, by Theorem 3.3 we have Fd

a(bM) 6= 0. Thus
by [14, Theorem 4.5] it follows that d ≤ dim(bM/abM). But dim(bM/abM) ≤
dim(bM) ≤ d by [14, Theorem 4.5] and so we conclude that dim(bM/abM) =
dim(bM) = d. �

Theorem 3.5. Let a and b be ideals of a local ring (R,m) and M a finitely gen-
erated R-module of finite dimension d. Then Ann(bFd

a(M)) = Ann(Fd
a(bM)).

Proof. If bFd
a(M) = 0, then by Theorem 3.3 Fd

a(bM) = 0 and the result follows
in this case. Thus, we assume that bFd

a(M) 6= 0 and so by Corollary 3.4

dim(M/aM) = dim(bM/abM) = dim bM = d.

Take u ∈ Ann(bFd
a(M)). Thus ubFd

a(M) = 0 and so ub ⊆ Ann(Fd
a(M)). By

Theorem 3.2 Ann(Fd
a(M)) = AnnM/U where U = ∪{N ≤ M : dimN/aN <

d}. Now, we have ubM ⊆ U and so dim(ubM/uabM) < d. Set

W = ∪{N ≤ bM : dimN/aN < d}
and so u ∈ Ann(bM/W ). Since by Theorem 3.2 Ann(bM/W ) = Ann(Fd

a(bM)),
it follows that u ∈ Ann(Fd

a(bM)). Hence, Ann(bFd
a(M)) ⊆ Ann(Fd

a(bM)).
Conversely, assume that u ∈ Ann(Fd

a(bM)) = Ann(bM/W ). Since W ⊆ U it
follows that ubM ⊆ U and so ub ⊆ Ann(M/U) = Ann(Fd

a(M)). Therefore
u ∈ Ann(bFd

a(M)) and the proof is complete. �

Corollary 3.6. Let a and b be ideals of a local ring (R,m) and M a finitely
generated R-module of finite dimension d and bFd

a(M) 6= 0. Then bFd
a(M) is

not finitely generated.

Proof. By [6, Lemma 2.2] Fd
a(M) is Artinian and so bFd

a(M) is Artinian. As-
sume that bFd

a(M) is finitely generated. Thus bFd
a(M) has finite length and so

there exists n ∈ N such that mnbFd
a(M) = 0. By Theorem 3.5 we conclude that

mn ⊆ Ann(Fd
a(bM)). But by Corollary 3.4 dim(bM) = d and by [6, Lemma

2.2] Fd
a(bM) is Artinian. Thus Fd

a(bM) is finitely generated (see [15, Theorem
7.30]) which is a contradiction by [1, Theorem 2.6(ii)]. �

Theorem 3.7. Let a and b be ideals of a local ring (R,m) and M a finitely
generated R-module of finite dimension d and bFd

a(M) 6= 0. Then

Ann(bFd
a(M)) = Ann(bM/UR(a, bM)),
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where UR(a, bM) is the largest submodule of bM such that

dim(UR(a, bM)/aUR(a, bM)) < d.

Proof. The result follows by Theorems 3.5 and 3.2. �

Proposition 3.8. Let a and b be ideals of a Noetherian local ring (R,m) and
M a finitely generated R-module of finite dimension d such that bFd

a(M) 6= 0.
Then UR(a, bM) = bM ∩ UR(a,M).

Proof. By Corollary 3.4

dim(M/aM) = dim(bM/abM) = d.

By definition, UR(a, bM) is the largest submodule of bM such that

dim(UR(a, bM)/aUR(a, bM)) < dim(bM/abM) = d.

But, bM ∩ UR(a,M) is a submodule of bM and

dim(bM ∩ UR(a,M)/a(bM ∩ UR(a,M))) ≤ dim(UR(a,M)/aUR(a,M))

< dim(M/aM) = d.

It follows that bM ∩ UR(a,M) ⊆ UR(a, bM). Conversely, UR(a,M) is the
largest submodule ofM such that dim(UR(a,M)/aUR(a,M)) < dim(M/aM) =
d. Thus UR(a, bM) ⊆ UR(a,M). Clearly, UR(a, bM) ⊆ bM . Therefore
UR(a, bM) ⊆ bM ∩ UR(a,M), as required. �

Remark 3.9. Let a be an ideal of a Noetherian local ring (R,m) and M a
finitely generated R-module of finite dimension d such that dim(M/aM) = d.
By [13, Theorem 2.6] we have

UR(a,M) = ∩pj∈AsshR M∩V(a)Nj ,

where 0 = ∩nj=1Nj is a reduced primary decomposition of the zero submodule
0 in M and Nj is a pj-primary submodule of M .

Corollary 3.10. Let a and b be ideals of a Noetherian local ring (R,m) and
M a finitely generated R-module. Let d := dimM and bFd

a(M) 6= 0. Then

Ann(bFd
a(M)) = Ann(bM/bM ∩ UR(a,M))

= Ann(bM/bM ∩ (∩pj∈AsshM∩V(a)Nj)),

where 0 = ∩nj=1Nj is a reduced primary decomposition of the zero submodule 0
in M and Nj is a pj-primary submodule of M .

Proof. By Theorem 3.7, Proposition 3.8 and Remark 3.9. �

Corollary 3.11. Let a and b be ideals of a Noetherian local ring (R,m) and
M a finitely generated R-module. Let d := dimM and bFd

a(M) 6= 0. Then
Ann(bFd

a(M)) = Ann(bM) whenever AssM ⊆ AsshM ∩V(a).

Proof. It follows from Corollary 3.10. �
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Corollary 3.12. Let a and b be ideals of a local ring (R,m) and M a finitely
generated R-module. Let d := dim(M). If bFd

a(M) 6= 0, then

Cosupp(bFd
a(M)) = Supp(bM/bM ∩ UR(a,M)).

Proof. By [6, Lemma 2.2] it follows that bFd
a(M) is Artinian. Thus by [16,

Proposition 2.3] and Corollary 3.10

Cosupp(bFd
a(M)) = V(Ann(bFd

a(M))) = V(Ann(bM/bM ∩ UR(a,M))).

But,

V(Ann(bM/bM ∩ UR(a,M))) = Supp(bM/bM ∩ UR(a,M))

and the proof is complete. �

Theorem 3.13. Let a and b be ideals of a local ring (R,m) and M a finitely
generated R-module of finite dimension d. Then

Att(bFd
a(M)) = Att(Fd

a(bM)).

Proof. If bFd
a(M) = 0, then Fd

a(bM) = 0 by Theorem 3.3. Thus

Att(bFd
a(M)) = Att(Fd

a(bM)) = φ.

Thus we assume that bFd
a(M) 6= 0. Then in view of Corollary 3.4 we have

dimM = dim(M/aM) = dim(bM/abM) = dim(bM) = d.

By [6, Lemma 2.2] Fd
a(M) and Fd

a(bM) are Artinian. Clearly, bFd
a(M) is a

submodule of Fd
a(M) and so is Artinian. On the other hand, by Lemma 2.2

Att(bFd
a(M)) ⊆ Att(Fd

a(M)) and by [6, Theorem 3.1] Att(Fd
a(M)) = AsshM ∩

V(a). Thus we conclude that Att(bFd
a(M)) = Min(Att(bFd

a(M))). But, bFd
a(M)

is an Artinian R-module and so the set of all minimal elements of Att(bFd
a(M))

is exactly the set of all minimal prime ideals containing Ann(bFd
a(M)). Thus

Min(Att(bFd
a(M))) = Min V(Ann(bFd

a(M))). Now by using Theorem 3.5 we
have

Att(bFd
a(M)) = Min V(Ann(bFd

a(M))) = Min V(Ann(Fd
a(bM))).

Since Fd
a(bM) is Artinian we have

Min V(Ann(Fd
a(bM))) = Min Att(Fd

a(bM)).

On the other hand, dim(bM) = d and by [6, Theorem 3.1]

Att(Fd
a(bM)) = Assh(bM) ∩V(a),

and so Min Att(Fd
a(bM)) = Att(Fd

a(bM)). Thus we conclude that Att(bFd
a(M))

= Att(Fd
a(bM)), as required. �

Corollary 3.14. Let a and b be ideals of a local ring (R,m) and M a finitely
generated R-module of finite dimension d. If bFd

a(M) 6= 0, then

Att(bFd
a(M)) = Assh(bM) ∩V(a) = {p ∈ Ass(bM) : dim(R/p) = d, p ⊇ a}.
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Proof. By Corollary 3.4 we have dimM = dim(bM) = d and by Theorem 3.13

Att(bFd
a(M)) = Att(Fd

a(bM)).

But by [6, Theorem 3.1] Att(Fd
a(bM)) = Assh(bM) ∩V(a), as required. �

Theorem 3.15. Let a and b be ideals of a local ring (R,m) and M a finitely
generated R-module. Let l := dim(M/aM) and k be an integer. Then

Coass(bHl
m(M/akM)) ⊆ Coass(bFl

a(M)).

In particular, if bHl
m(M/akM) 6= 0, then Assh(b(M/akM)) ⊆ Coass(bFl

a(M)).

Proof. The short exact sequence

0→ akM →M →M/akM → 0

induces the following exact sequence

Fl
a(M)→ Fl

a(M/akM)→ Fl+1
a (akM).

Since dim(akM/ak+1M) ≤ dim(M/aM) = l we have Fl+1
a (akM) = 0. On

the other hand, M/akM is an a-torsion R-module and so by [6, Lemma 2.1]

Fl
a(M/akM) ' Hl

m(M/akM). Thus from the above sequence we get the ex-

act sequence Fl
a(M) → Hl

m(M/akM) → 0. Thus bHl
m(M/akM) is a homo-

morphic image of bFl
a(M) and so Coass(bHl

m(M/akM)) ⊆ Coass(bFl
a(M)).

Now, assume that bHl
m(M/akM) 6= 0. Since bHl

m(M/akM) is Artinian,

by [16, Theorem 1.14] and Corollary 2.16 we have Coass(bHl
m(M/akM)) =

Att(bHl
m(M/akM)) = Assh(b(M/akM)), as required. �

Acknowledgment. The authors would like to thank the referee for his/her
useful suggestions.

References

[1] M. Asgharzadeh and K. Divaani-Aazar, Finiteness properties of formal local cohomology

modules and Cohen-Macaulayness, Comm. Algebra 39 (2011), no. 3, 1082–1103. https:
//doi.org/10.1080/00927871003610312

[2] A. Atazadeh, M. Sedghi, and R. Naghipour, On the annihilators and attached primes of
top local cohomology modules, Arch. Math. (Basel) 102 (2014), no. 3, 225–236. https:

//doi.org/10.1007/s00013-014-0629-1

[3] A. Atazadeh, M. Sedghi, and R. Naghipour, Cohomological dimension filtration and
annihilators of top local cohomology modules, Colloq. Math. 139 (2015), no. 1, 25–35.

https://doi.org/10.4064/cm139-1-2

[4] K. Bahmanpour, Annihilators of local cohomology modules, Comm. Algebra 43 (2015),
no. 6, 2509–2515. https://doi.org/10.1080/00927872.2014.900687

[5] K. Bahmanpour, J. A’zami, and G. Ghasemi, On the annihilators of local cohomology

modules, J. Algebra 363 (2012), 8–13. https://doi.org/10.1016/j.jalgebra.2012.03.
026

[6] M. H. Bijan-Zadeh and S. Rezaei, Artinianness and attached primes of formal local

cohomology modules, Algebra Colloq. 21 (2014), no. 2, 307–316. https://doi.org/10.
1142/S1005386714000261

https://doi.org/10.1080/00927871003610312
https://doi.org/10.1080/00927871003610312
https://doi.org/10.1007/s00013-014-0629-1
https://doi.org/10.1007/s00013-014-0629-1
https://doi.org/10.4064/cm139-1-2
https://doi.org/10.1080/00927872.2014.900687
https://doi.org/10.1016/j.jalgebra.2012.03.026
https://doi.org/10.1016/j.jalgebra.2012.03.026
https://doi.org/10.1142/S1005386714000261
https://doi.org/10.1142/S1005386714000261


160 SH. REZAEI AND B. SADEGHI

[7] M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with

geometric applications, Cambridge Studies in Advanced Mathematics, 60, Cambridge

University Press, Cambridge, 1998. https://doi.org/10.1017/CBO9780511629204
[8] K. Divaani-Aazar, Vanishing of the top local cohomology modules over Noetherian rings,

Proc. Indian Acad. Sci. Math. Sci. 119 (2009), no. 1, 23–35. https://doi.org/10.1007/
s12044-009-0003-6

[9] K. Divaani-Aazar, R. Naghipour, and M. Tousi, Cohomological dimension of certain

algebraic varieties, Proc. Amer. Math. Soc. 130 (2002), no. 12, 3537–3544. https://
doi.org/10.1090/S0002-9939-02-06500-0

[10] M. Eghbali, On Artinianness of formal local cohomology, colocalization and coassociated

primes, Math. Scand. 113 (2013), no. 1, 5–19. https://doi.org/10.7146/math.scand.
a-15478

[11] M. Hellus, A note on the injective dimension of local cohomology modules, Proc. Amer.

Math. Soc. 136 (2008), no. 7, 2313–2321. https://doi.org/10.1090/S0002-9939-08-
09198-3

[12] I. G. Macdonald, Secondary representation of modules over a commutative ring, in

Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome,
1971), 23–43, Academic Press, London, 1973.

[13] S. Rezaei, On the annihilators of formal local cohomology modules, Hokkaido Math. J.
48 (2019), no. 1, 195–206. https://doi.org/10.14492/hokmj/1550480649

[14] P. Schenzel, On formal local cohomology and connectedness, J. Algebra 315 (2007),

no. 2, 894–923. https://doi.org/10.1016/j.jalgebra.2007.06.015
[15] R. Y. Sharp, Steps in Commutative Algebra, second edition, Cambridge University Press,

Cambridge, 2000.

[16] S. Yassemi, Coassociated primes, Comm. Algebra 23 (1995), no. 4, 1473–1498. https:
//doi.org/10.1080/00927879508825288

Shahram Rezaei

Department of Mathematics

Payame Noor University (PNU)
P.O.Box 19395-4697, Tehran, Iran

Email address: sha.rezaei@gmail.com

Behrouz Sadeghi

Department of Mathematics

Payame Noor University (PNU)
P.O.Box 19395-4697, Tehran, Iran

Email address: behruz.sadeqi@gmail.com

https://doi.org/10.1017/CBO9780511629204
https://doi.org/10.1007/s12044-009-0003-6
https://doi.org/10.1007/s12044-009-0003-6
https://doi.org/10.1090/S0002-9939-02-06500-0
https://doi.org/10.1090/S0002-9939-02-06500-0
https://doi.org/10.7146/math.scand.a-15478
https://doi.org/10.7146/math.scand.a-15478
https://doi.org/10.1090/S0002-9939-08-09198-3
https://doi.org/10.1090/S0002-9939-08-09198-3
https://doi.org/10.14492/hokmj/1550480649
https://doi.org/10.1016/j.jalgebra.2007.06.015
https://doi.org/10.1080/00927879508825288
https://doi.org/10.1080/00927879508825288

