• Title/Summary/Keyword: quantum optics

Search Result 231, Processing Time 0.02 seconds

A study on the fabrication of periodically poled Ti:LiNbO3 (PPLN) by the control of charge (전하량제어에 의한 주기적 분극반전 Ti:LiNbO3 (PPLN) 제작 공정에 관한 연구)

  • Kim, Won-Joung;Jung, Hong-Sik;Lee, Han-Young
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.366-375
    • /
    • 2005
  • A fabrication process of periodic electric field assisted poling of Ti-diffused channel waveguides in LiNbO3 (Ti:PPLN) has been developed and improved using a periodic 180o phase inversion along the z-axis. The zig for poling inversion and the Labview program of charge control have been devised. Pulse high voltage and duty cycle were adjusted based on the estimated charge required for poling inversion. Monitoring the change of leakage current under applied voltage less than the coercive voltage also minimized a breakdown.

Polarization Maintaining Dichroic Beam-splitter and Its Surface Shape Control by Back Side AR Coating

  • Ma, Chong;Chen, Gang;Liu, Dingquan;Zhang, Rongjun;He, Junbo;Zhu, Xudan;Li, Daqi
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.576-582
    • /
    • 2021
  • Dichroic beam-splitter (DBS) with polarization-maintaining took an important role in the free space quantum telecommunication tests on the Micius satellite of China. In this presentation, we designed and prepared a 50 layer polarization-maintaining DBS coating by a dual ion beam sputtering deposition (Dual-IBS) method. In order to solve a stress problem, an 18 layer special anti-reflection (AR) coating with similar physical thickness ratio was deposited on the backside. By stress compensation, the surface flatness RMS value of the DBS sample decreased from 0.341 λ (@632.8 nm) to 0.103 λ while beam splitting and polarization maintaining properties were almost kept unchanged. Further, we discussed the mechanism of film stress and stress compensation by equation deduction and found that total stress had a strong relationship with the total physical thickness and the ratio of layer materials.

Analysis of Lateral-mode Characteristics of 850-nm MQW GaAs/(Al,Ga)As Laser Diodes (850 nm GaAs/AlGaAs MQW LD의 Lateral-mode 특성 연구)

  • Yang, Jung-Tack;Kwak, Jung-Geun;Choi, An-Sik;Kim, Tae-Kyung;Choi, Woo-Young
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.2
    • /
    • pp.55-61
    • /
    • 2021
  • The lateral-mode characteristics of 850-nm GaAs/(Al,Ga)As multiple-quantum-well laser diodes and their influence on the kinks in output optical power are investigated. For the investigation, self-consistent electro-thermal-optical simulation and measurement of fabricated devices are used. From this investigation, the optimal P-cladding thickness that provides single-lateral-mode operation is determined, so that high beam quality can be achieved even at high output powers.

Classification of Midinfrared Spectra of Colon Cancer Tissue Using a Convolutional Neural Network

  • Kim, In Gyoung;Lee, Changho;Kim, Hyeon Sik;Lim, Sung Chul;Ahn, Jae Sung
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.92-103
    • /
    • 2022
  • The development of midinfrared (mid-IR) quantum cascade lasers (QCLs) has enabled rapid high-contrast measurement of the mid-IR spectra of biological tissues. Several studies have compared the differences between the mid-IR spectra of colon cancer and noncancerous colon tissues. Most mid-IR spectrum classification studies have been proposed as machine-learning-based algorithms, but this results in deviations depending on the initial data and threshold values. We aim to develop a process for classifying colon cancer and noncancerous colon tissues through a deep-learning-based convolutional-neural-network (CNN) model. First, we image the midinfrared spectrum for the CNN model, an image-based deep-learning (DL) algorithm. Then, it is trained with the CNN algorithm and the classification ratio is evaluated using the test data. When the tissue microarray (TMA) and routine pathological slide are tested, the ML-based support-vector-machine (SVM) model produces biased results, whereas we confirm that the CNN model classifies colon cancer and noncancerous colon tissues. These results demonstrate that the CNN model using midinfrared-spectrum images is effective at classifying colon cancer tissue and noncancerous colon tissue, and not only submillimeter-sized TMA but also routine colon cancer tissue samples a few tens of millimeters in size.

Optical and Electrical Characteristics of GaN-based Blue LEDs after Low-current Stress (GaN계 청색 발광 다이오드에서 저전류 스트레스 후의 광 및 전기적 특성 변화)

  • Kim, Seohee;Yun, Joosun;Shin, Dong-Soo;Shim, Jong-In
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.2
    • /
    • pp.64-70
    • /
    • 2012
  • We analyzed the changes in electrical and optical characteristics of 1 $mm^2$ multiple-quantum-well (MQW) blue LEDs grown on a c-plane sapphire substrate after a stress test. Experiments were performed by injecting 50 mA current for 200 hours to TO-CAN packaged sample chips. We selected the value of injection current for stress through the junction-temperature measurement by using the forward-voltage characteristics of a diode to maintain a sufficiently low junction temperature during the test. The junction temperature at the selected injection current of 50 mA was 308 K. Experiments were performed under the assumption that the average junction temperature of 308 K did not affect the characteristics of the ohmic contact and the GaN-based materials. Before and after the stress test, we measured and analyzed current-voltage, light-current, light distribution on the LED surface, wavelength spectrum and relative external quantum efficiency (EQE). After the stress test, it was observed experimentally that the optical power and the relative EQE decreased. We theoretically investigated and experimentally proved that these phenomena are due to the increased nonradiative recombination rate caused by the increased defect density.

Signal Level Analysis of a Camera System for Satellite Application

  • Kong, Jong-Pil;Kim, Bo-Gwan
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.220-223
    • /
    • 2008
  • A camera system for the satellite application performs the mission of observation by measuring radiated light energy from the target on the earth. As a development stage of the system, the signal level analysis by estimating the number of electron collected in a pixel of an applied CCD is a basic tool for the performance analysis like SNR as well as the data path design of focal plane electronic. In this paper, two methods are presented for the calculation of the number of electrons for signal level analysis. One method is a quantitative assessment based on the CCD characteristics and design parameters of optical module of the system itself in which optical module works for concentrating the light energy onto the focal plane where CCD is located to convert light energy into electrical signal. The other method compares the design\ parameters of the system such as quantum efficiency, focal length and the aperture size of the optics in comparison with existing camera system in orbit. By this way, relative count of electrons to the existing camera system is estimated. The number of electrons, as signal level of the camera system, calculated by described methods is used to design input circuits of AD converter for interfacing the image signal coming from the CCD module in the focal plane electronics. This number is also used for the analysis of the signal level of the CCD output which is critical parameter to design data path between CCD and A/D converter. The FPE(Focal Plane Electronics) designer should decide whether the dividing-circuit is necessary or not between them from the analysis. If it is necessary, the optimized dividing factor of the level should be implemented. This paper describes the analysis of the electron count of a camera system for a satellite application and then of the signal level for the interface design between CCD and A/D converter using two methods. One is a quantitative assessment based on the design parameters of the camera system, the other method compares the design parameters in comparison with those of the existing camera system in orbit for relative counting of the electrons and the signal level estimation. Chapter 2 describes the radiometry of the camera system of a satellite application to show equations for electron counting, Chapter 3 describes a camera system briefly to explain the data flow of imagery information from CCD and Chapter 4 explains the two methods for the analysis of the number of electrons and the signal level. Then conclusion is made in chapter 5.

  • PDF

$1{times}8$ Array of GaAs/AlGaAs quantum well infrared photodetector with 7.8$\mu\textrm{m}$ peak response ($1{times}8$ 배열, 7.8 $\mu\textrm{m}$ 최대반응 GaAs/AlGaAs 양자우물 적외선 검출기)

  • 박은영;최정우;노삼규;최우석;박승한;조태희;홍성철;오병성;이승주
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.6
    • /
    • pp.428-432
    • /
    • 1998
  • We fabricated 1$\times$8 array of GaAs/AlGaAs quantum well infrared photodetectors for the long wavelength infrared detection which is based on the bound-continuum intersubband transition, and characterized its electrical and optical properties. The device was grown on SI-GaAs(100) by the molecular beam epitaxy and consisted of 25 period of 40 ${\AA} $ GaAs well and 500 ${\AA} $ $Al_{0.28} Ga_{0.72}$ As barrier. To reduce the possibility of interface states only the center 20 ${\AA} $ of the well was doped with Si ($N_D=2{\times}10^{18} cm^{-3}$). We etched the sample to make square mesas of 200$\times$200 $\mu\textrm{m}^2$ and made an ohmic contact on each pixel with Au/Ge. Current-voltage characteristics and photoresponse spectrum of each detector reveal that the array was highly uniform and stable. The spectral responsivity and the detectivity $D^*$ were measured to be 180,260 V/W and $4.9{\times}10^9cm\sqrt{Hz}/W$ respectively at the peak wavelength of $\lambda$ =7.8 $\mu\textrm{m}$ and at T=10 K.

  • PDF

Preparation of Biopolymer coated Magnetite And Magnetic Biopolymer Microsphere Particles for Medical Application (의학적 응용을 위한 생체 고분자로 피복 된 자성 나노 입자와 미소구체의 제조)

  • Ko, Sang-Gil;Cho, Jun-Hee;Ahn, Yang-kyu;Song, Ki-Chang;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.4
    • /
    • pp.221-227
    • /
    • 2006
  • We have synthesized uniform nanometer sized magnetite particles using chemical coprecipitation technique through a sonochemical method with surfactant such as oleic acid. Magnetite phase nanoparticles could be observed from X-ray diffraction. Magnetite nanoparticles is surface phase morphology and biopolymer-microspheres for Application Medical. Magnetite nanoparticles coated biopolymer. Atomic Force Microscope (AFM) was used to image the coated nanoparticles. Magnetic colloid suspensions containing particles with sodium oleate, chitosan and $\beta$-glucan have been prepared. The morphology of the magnetic biopolymer microsphere particles were characterized using optical microscope. Magnetic hysteresis measurement were performed using a superconducting quantum interference device (SQUID) magnetometer at room temperature to investigate the magnetic properties of the biopolymer microspheres and magnetite coated biopolymer including magnetite nanoparticles. Magnetic Resonance (MR) imaging was used to investigate biopolymer coated nanoparticles and biopolymer microspheres.

Multiphonon relaxation and frequency upconversion of $Er^{3+}$ ions in heavy metal oxide glasses ($Er^{3+}$첨가 중금속 산화물 유리의 다중포논 완화와 주파수 상향 전이 현상)

  • Choi, yong-Gyu;Kim, Kyong-Hon;Heo, Jong
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.221-226
    • /
    • 1998
  • Ternary heavy metal oxide glasses in the $PbO-Bi_2O_3-Ga_2O_3$ system doped with $Er_2O_3$ were prepared and their spectroscopic properties, such as radiative transition probability, calculated and measured radiative lifetimes and cross-sections of 1.5 $\mu\textrm{m}$ and 2.7 $\mu\textrm{m}$ emissions were analyzed. Enhanced quantum efficiencies of some electronic transitions were evident mainly because of the low vibrational phonon energy ($~500cm^{-1}$) inherent in the host glasses. This seems to be the main reason for obtaining the 2.7 $\mu\textrm{m}$ luminescence which is normally quenched in the conventional oxide glasses. In addition, green and red fluorescence emissions were observed through the frequency upconversion processes of the 798 nm excitation. Non-radiative transition due to the multiphonon relaxation is a dominant lifetime-shortening mechanism in the 4f-4f transitions in $Er^{3+}$ ion except for the $^4S_{3/2}{\rightarrow}^4I_{15/2}$ transition where a non-radiative transfer to band-gap excitation of the host glasses is dominant. Melting of glasses under an inert gas atmosphere and (or) addition of the typical glass-network former into glasses is necessary in order to enhance the quantum efficiency of the transition.

  • PDF

Atomic Layer Deposition Method for Polymeric Optical Waveguide Fabrication (원자층 증착 방법을 이용한 폴리머 광도파로 제작)

  • Eun-Su Lee;Kwon-Wook Chun;Jinung Jin;Ye-Jun Jung;Min-Cheol Oh
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.4
    • /
    • pp.175-183
    • /
    • 2024
  • Research into optical signal processing using photonic integrated circuits (PICs) has been actively pursued in various fields, including optical communication, optical sensors, and quantum optics. Among the materials used in PIC fabrication, polymers have attracted significant interest due to their unique characteristics. To fabricate polymer-based PICs, establishing an accurate manufacturing process for the cross-sectional structure of an optical waveguide is crucial. For stable device performance and high yield in mass production, a process with high reproducibility and a wide tolerance for variation is necessary. This study proposes an efficient method for fabricating polymer optical-waveguide devices by introducing the atomic layer deposition (ALD) process. Compared to conventional photoresist or metal-film deposition methods, the ALD process enables more precise fabrication of the optical waveguide's core structure. Polyimide optical waveguides with a core size of 1.8 × 1.6 ㎛2 are fabricated using the ALD process, and their propagation losses are measured. Additionally, a multimode interference (MMI) optical-waveguide power-splitter device is fabricated and characterized. Throughout the fabrication, no cracking issues are observed in the etching-mask layer, the vertical profiles of the waveguide patterns are excellent, and the propagation loss is below 1.5 dB/cm. These results confirm that the ALD process is a suitable method for the mass production of high-quality polymer photonic devices.