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The development of midinfrared (mid-IR) quantum cascade lasers (QCLs) has enabled rapid high-
contrast measurement of the mid-IR spectra of biological tissues. Several studies have compared the 
differences between the mid-IR spectra of colon cancer and noncancerous colon tissues. Most mid-
IR spectrum classification studies have been proposed as machine-learning-based algorithms, but this 
results in deviations depending on the initial data and threshold values. We aim to develop a process for 
classifying colon cancer and noncancerous colon tissues through a deep-learning-based convolutional-
neural-network (CNN) model. First, we image the midinfrared spectrum for the CNN model, an image-
based deep-learning (DL) algorithm. Then, it is trained with the CNN algorithm and the classification 
ratio is evaluated using the test data. When the tissue microarray (TMA) and routine pathological slide 
are tested, the ML-based support-vector-machine (SVM) model produces biased results, whereas we 
confirm that the CNN model classifies colon cancer and noncancerous colon tissues. These results dem-
onstrate that the CNN model using midinfrared-spectrum images is effective at classifying colon cancer 
tissue and noncancerous colon tissue, and not only submillimeter-sized TMA but also routine colon can-
cer tissue samples a few tens of millimeters in size.
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I. INTRODUCTION

Because many biomolecular materials have absorption 
peaks in the midinfrared (mid-IR) spectral range, mid-IR 
hyperspectral imaging enables the identification of sample 
structure as well as sample chemistry, without staining or 
prior information about sample materials [1–8]. With the 
development of quantum cascade lasers (QCLs), it is pos-

sible to measure the mid-IR absorption spectrum faster 
than with Fourier-transform infrared spectroscopy (FT-
IR) [9–11]. Compared to the fastest high-definition FT-IR 
spectroscopy, QCL-based mid-IR spectroscopy measures 
a tissue microarray (TMA) much faster, enabling real-time 
imaging of Amoeba proteus [12, 13]. 

Pathological studies based on mid-IR hyperspectral anal-
ysis have been conducted through the analysis of various 
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clinical samples including respiratory fluid, urine, blood, 
liver fluid, and biopsy samples [14]. Combined with the sta-
tistical pattern recognition of the mid-IR spectrum to reveal 
the pathological characteristics of prostate tissue, a study on 
the classification of benign and malignant prostate epithe-
lium was proposed [15]. In addition, a study was proposed 
in which a label-free spectrum of a lung cancer pathology 
sample was measured and diagnosed using a multivariate 
analysis method [7]. By extracting features using various 
methods, such as principal-component analysis (PCA), 
linear discriminant analysis (LDA), and hierarchical cluster 
analysis (HCA), studies to analyze the spectrum of cancer 

tissue using machine-learning (ML) -based algorithms, 
such as support vector machine (SVM) and random forest 
(RF), have also been proposed [11, 16–22]. Owing to the 
development of a deep-learning (DL) -based algorithm, Liu 
et al. [23] reported results from a study to detect breast can-
cer metastasis using a convolutional-neural-network (CNN) 
[24–27] model using gigapixel pathological images, and 
Gao et al. [28] reported a study that classified cancer mo-
lecular subtypes. In addition, studies confirming the results 
of early lung cancer diagnosis using DL for spectroscopic 
analysis of circulating exosomes have also been reported 
[29], and DL studies to analyze gastric cancer tissues using 

(a) (b)

(c)                                     (d)

FIG. 1. Measurement samples: (a) H&E stained tissue micro array (TMA) (US Biomax, Maryland, USA). TMA is sliced to 
minimize the effect of the peak absorption value, by maintaining the sample of the paraffin block at a constant thickness of 4–5 µm. 
Paraffin with a mid-IR absorption peak is removed by immersing the section in xylene. In addition, serial sections of the sample 
are compared using H&E staining, to confirm the location of the sample. (b) 1650-cm−1 images of colon cancer tissues E3, E10 
and noncancerous colon tissues J3, J10 in deparaffinized TMA (scale bar: 250 µm). (c) Routine pathological slide diagnosed by 
pathologists at Chosun University Hospital. (d) 1650-cm−1 image of the deparaffinized routine pathological slide (scale bar: 1 mm).
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the difference in spatial characteristics of the spectrum have 
also been reported [30]. Furthermore, a study was proposed 
in which electroencephalograms (EEGs) or electrocardio-
grams (ECGs) were converted into spectrograms and ana-
lyzed with CNN [31, 32]. In prior studies, to improve the 
absorption-spectrum deviation and resonant Mie scattering 
(RMieS) [33, 34] that occur in biological samples, complex 
preprocessing, such as PCA [35–41], RMieS correction [33, 
34], and secondary differentiation, was required [11]. In 
addition, ML-based algorithms such as RF yield different 
results based on the initial value or threshold [42, 43].

In this study, a method of converting the mid-IR spectra 
of colon cancer tissues into images and classifying them 
into groups N and T using CNN is proposed. This method 
simplifies the preprocessing compared to previous studies, 
reduces the effect of the initial value, and eliminates the 
need to set a threshold.

II. METHODS

For the sample, we use a TMA (US Biomax, Maryland, 
USA) and routine pathological slide for training and verifi-
cation of the CNN model and the SVM model respectively. 

The sample is sliced to minimize the effect of the peak 
absorption value, by maintaining the sample of the paraf-
fin block at a constant thickness of 4–5 µm. Paraffin with a 
mid-IR absorption peak is removed by immersing the sec-
tion in xylene. In addition, serial sections of the sample are 
compared using hematoxylin and eosin (H&E) staining, to 
confirm the location of the sample.

All TMA purchased from US Biomax are diagnosed 
pathologically, as shown in Fig. 1(a). Among the TMA, 
E (diagnosed as colon cancer tissue) and J (diagnosed as 
noncancerous colon tissue) are used as test data. The actu-
ally measured TMA is deparaffinized and confirmed using 
1650-cm−1 absorption images, which are shown in Fig. 1(b). 
Figure 1(c) is an H&E-stained image with pathological di-
agnosis of a routine pathological slide at Chosun University 
Hospital, and Fig. 1(d) shows the 1650-cm−1 absorption im-
age of the deparaffinized routine pathological slide.

All methods and experimental protocols are approved by 
the Institutional Review Board of Chosun University Hos-
pital (IRB no. CHOSUN 2021-09-016). Signed informed 
consent has been waived by the review board. All enrolled 
patients have provided informed consent. All procedures 
are conducted in accordance with the approved guidelines 
and regulations for human experimental research.

QCL-based mid-IR microscopy (Spero QT; Daylight 
Solutions Inc., San Diego, USA) is used for mid-IR hyper 
spectral imaging, as shown in Fig. 2. The hyperspectral im-
age (λ  = 5.5–10.5 µm) is measured in 480 × 480 pixels us-
ing a microbolometer-array detector within approximately 
45 s. The scale can be measured with a low magnification 
of 4× [field of view (FOV) 2 × 2 mm, spatial resolution 12 
µm] and a high magnification of 12.5× (FOV 650 × 650 
µm, spatial resolution 5 µm).

The mid-IR image of the sample is measured by choos-
ing low magnification in transmission mode. To minimize 
variation of the spectral values due to the environment, the 
chamber is purged with nitrogen for 10 minutes, and the 
background is measured and applied once every 20 min-
utes.

Due to the preparation of the sample while maintaining 
a constant thickness, the Beer-Lambert Law can be applied, 
and the influence of the sample thickness on the mid-IR 
absorption spectrum can be reduced. The Beer-Lambert 
Law shows the relationship between transmission and light 
absorption due to light passing through a substance, which 
causes light attenuation, such as reflection, diffraction, re-
fraction, and scattering. This law states that the absorption 
of light is proportional to the thickness and the concentra-
tion of the sample. The formula used for the Beer-Lambert 
Law [44] is as follows (T: transmission rate, I0: intensity 
of incident light, It: intensity of transmission light, A: ab-
sorption of light, α: absorption factor, d: thickness of sub-
stance):
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FIG. 2. Schematic of the experimental setup. The mid-IR 
hyperspectral image is measured at a wavelength from 5.5 to 
10.5 µm in 480 × 480 pixels using a microbolometer-array 
detector within approximately 45 s. The sample is measured 
with a low magnification of 4× [field of view (FOV) 2 × 2 
mm, spatial resolution 12 µm] in transmission mode.



Current Optics and Photonics, Vol. 6, No. 1, February 2022 9595

(a)

(b)

(c)

FIG. 3. Preprocessing and structure of the convolutional-neural-network (CNN) model: (a) the classification vector of the support 
vector machine (SVM) model in the feature graph of primary principal component (PC) and secondary PC, (b) To train the CNN 
model, which is an image-based deep-learning (DL), the mid-IR spectrum is converted into an image. The number of duplicate 
spectra is set to 426, which is the number of measured wave numbers, because the input data of the CNN model must be square, and 
(c) to reduce the image size and training time, the data size is converted from 426 × 426 to 28 × 28 and entered into a CNN model, 
consisting of a convolution and maxpooling repetitive layer and a fully connected layer.
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FIG. 4. Classification results for the support vector machine (SVM) model for colon cancer and noncancerous colon tissue in a 
routine pathological slide: (a) s 1 and 2 (diagnosed as cancer) and 3 and 4 (diagnosed as normal mucosa) in a routine pathological 
slide (scale bar: 1 mm), (b) classification result for the SVM model of 1 and 2, diagnosed as cancer (scale bar: 50 µm), and (c) 
classification result for the SVM model of 3 and 4, diagnosed as normal mucosa (scale bar: 50 µm).

(a)

(b)

(c)
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At the time of measurement, the absorption peak’s po-
sition of Amide I (a type of protein) could be shifted by 
±2–4 cm−1. For better comparison of the characteristics of 
the spectra, the spectra of all pixels must be aligned so that 
Amide 1 peak is located at 1650 cm−1. To remove substrate-
only parts without tissue samples from 230,400 pixels, only 
pixels with a peak value at 1650 cm−1 between 0 and 2 are 
included in the training and evaluation data. The target data 
required for training data is set to group T to 1 and group 
N to 0. Group T is set to the TMA that is pathologically di-
agnosed with colon cancer, and group N is set to the TMA 
that is pathologically diagnosed with noncancerous colon 
tissue.

The preprocessing images are divided into a training 
dataset, test dataset, and validation dataset. The training 
dataset is the dataset used to train the model; the test data-
set is the dataset that extracts 20% of random data from the 
training dataset, to check whether the training is performing 
well; and the validation dataset, called test data, is a sepa-
rate dataset from the training dataset.

In SVM [45–48] model training, 10 principal compo-
nents (PCs) extracted from the preprocessed data through 
PCA [35–41] are input. The SVM model is classified into 
two groups: colon cancer tissue group T and noncancerous 
colon tissue group N. As a result, the classification vector 
of the SVM model appears as Fig. 3(a) in the feature graph 
of primary PC and secondary PC. PCA is performed us-
ing the sklearn.decomposition. PCA function provided by 
Python (Python Software Foundation, DE, USA), and the 
SVM model is created using the sklearn.svm.SVC function 
provided by Python.

To train the CNN model, which is an image-based DL, 
the mid-IR spectrum is converted into an image. To classify 
the hyperspectral mid-IR image of the tissue pixel by pixel, 
the mid-IR spectrum of each pixel is duplicated several 
times to create an image. The number of duplicate spectra is 
set to 426, which is the number of measured wave numbers, 
because the input data of the CNN model must be square.

To train with large amounts of image data, the image 
size is converted from 426 × 426 to 28 × 28 using the re-
size function of OpenCV. The layer of the CNN model is 
designed to repeat convolution and max-pooling, and the 
feature nodes are connected as a fully connected layer; it is 
constructed using the Conv2D, MaxPooling, Flatten, Drop-
out, and Dense functions provided by Keras (Keras, CA, 
USA). All convolution layers consist of 3 × 3 kernels [stride 
= 1, padding = 1, and Rectified Linear Unit (ReLu)], and all 
pooling layers consist of 2 × 2 kernels.

III. RESULTS

The SVM model and CNN model are trained with 
2,521,326 input data. The trained SVM and CNN models 

are tested using TMA and a routine pathological slide. 
Among routine pathological slides, 1 and 2 of Figs. 4 and 
5 (diagnosed as cancer) and 3 and 4 of Figs. 4 and 5 (diag-
nosed as normal mucosa) are tested. The formula used for 
the spectral classification result of the hyperspectral mid-IR 
image is as follows (Rc: ratio of cancer tissue, Rn: ratio of 
noncancerous tissue, Nc: number of pixels corresponding to 
cancer tissue, Nn: number of pixels corresponding to non-
cancerous tissue, Nt: number of total pixels):

3 
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In the SVM model, 89.27% of the 367,780 pixels of 
tissues diagnosed with colon cancer among TMA are clas-
sified into group T, and 18.95% of the 310,001 pixels of 
tissues diagnosed with noncancerous colon tissue among 
TMA are classified as group N (Fig. 6). In addition, of the 
668,947 pixels in the routine pathological slide, 80.16% are 
classified as group T and 19.84% are classified as group 
N. As a result, the test results of the SVM model tend to be 
biased toward group T regardless of the pathology diagno-
sis, for both TMA and routine pathological slide. The SVM 
regularization parameter and the type and coefficient of the 
SVM kernel are not optimized, so it is predicted that the 
SVM model will have difficulty in classifying PCs.

In the CNN model, 63.29% of the 367,780 images of 
tissues diagnosed with colon cancer among TMA are classi-
fied as group T. Of the 310,001 images of tissues diagnosed 
with noncancerous colon tissue among TMA, 80.17% are 
classified into group N (Fig. 7). In addition, of the 668,947 
images of a routine pathological slide, 35.20% are clas-
sified as group T and 64.80% as group N. Unlike the test 
results for the ML-based SVM model, the CNN model con-
firms that colon cancer and noncancerous colon tissues can 
be classified, and there is no need to optimize parameters 
and kernels, so it is more effective in classifying.

IV. DISCUSSION

In prior studies, complex preprocessing such as PCA, 
RMieS [33, 34] calibration, and secondary differentiation 
were required to improve RMieS [33, 34] and absorption-
spectrum deviations occurring in biological samples [11]. 
In addition, for ML-based algorithms such as RF, the result-
ing value is based on the initial value or threshold [42, 43]. 
Therefore, a method for converting the mid-IR spectrum 
of colon cancer into an image and classifying it into group 
N or T using CNN has been proposed. The preprocessing 
is simpler than that in previous studies, and the influences 
of the initial value and threshold are less. The CNN model 
was evaluated based on TMA and a routine pathological 
slide. As a result of the CNN model in this study classify-
ing TMA images by pixel, 63.29% of pixels were classified 
as Group T in cancer tissue TMA and 80.27% as Group 
N in normal tissue TMA. Therefore, the CNN model of 
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FIG. 5. Classification results for the convolutional-neural-network (CNN) model for colon cancer and noncancerous colon tissue 
in a routine pathological slide: (a) locations 1 and 2 (diagnosed as cancer) and 3 and 4 (diagnosed as normal mucosa) in a routine 
pathological slide (scale bar: 1 mm), (b) classification result for the CNN model of 1 and 2, diagnosed as cancer (scale bar: 50 µm), 
and (c) classification result for the CNN model of 3 and 4, diagnosed as normal mucosa (scale bar: 50 µm).

(a)

(b)

(c)
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FIG. 6. Classification results for the support vector machine (SVM) model for colon cancer and noncancerous colon tissue in tissue 
micro array (TMA): left, colon cancer tissue (E1:10); right, noncancerous colon tissue (J1:10) (scale bar: 250 µm).
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FIG. 7. Classification results for the convolutional-neural-network (CNN) model for colon cancer and noncancerous colon tissue in 
tissue micro array (TMA): left, colon cancer tissue (E1:10); right, noncancerous colon tissue (J1:10) (scale bar: 250 µm).
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this study has demonstrated that both TMA and a routine 
pathological slide can be classified as colon cancer or non-
cancerous colon tissue. In addition, the ML-based SVM 
model showed results skewed toward group T, and most of 
the mid-IR spectra of J (diagnosed as noncancerous colon 
tissue) were classified as group T. On the contrary, it was 
confirmed that the CNN model has relatively high accu-
racy in the classification of colon cancer and noncancerous 
colon tissue, compared to the SVM model. However, the 
accuracy of the CNN model is still not sufficient, because 
the number of epochs based on the model training time is 
insufficient compared to the number of data, and the target 
data are comprehensive because there is no pixel-by-pixel 
diagnosis for colon cancer tissue. To increase the accuracy 
of the model, pixel-by-pixel annotation of the colon cancer 
tissue by the pathologist is required, and either the number 
of epochs or the depth of the model should be increased by 
using a deeper CNN algorithm.

V. CONCLUSION

In conclusion, a method for converting the mid-IR spec-
trum of colon cancer to an image and classifying it into 
group N or T using CNN was proposed, and the model was 
evaluated using TMA and a routine pathological slide. We 
visualized mid-IR spectra into a 2D image, for classifica-
tion of colon cancer tissue using a CNN model. As a result, 
the complex preprocessing was simplified and the devia-
tion in the results that was observed in previous studies 
was reduced. This study showed that the CNN model could 
classify colon cancer and noncancerous colon tissue. In ad-
dition, the ML-based SVM model showed results that were 
skewed toward group T, and it was confirmed that the mid-
IR spectra of J (diagnosed with noncancerous colon tissue) 
were mostly classified as group T. Compared to the SVM 
model, the CNN model has relatively high accuracy in the 
classification of colon cancer and noncancerous colon tis-
sue. We expect that in future works the sensitivity, speci-
ficity, and accuracy of the CNN model could be assessed 
through comparison with the pathologist’s decision data 
with pixel-by-pixel target data. Thus, it is expected that the 
CNN model of this study will be helpful in pathological di-
agnosis through the mid-IR absorption spectrum, which is 
an objective indicator.
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