Multiphonon relaxation and frequency upconversion of $Er^{3+}$ ions in heavy metal oxide glasses

$Er^{3+}$첨가 중금속 산화물 유리의 다중포논 완화와 주파수 상향 전이 현상

  • Choi, yong-Gyu (Telecommunication Basic Research Laboratory Electronics and Telecommunications Research Institute) ;
  • Kim, Kyong-Hon (Telecommunication Basic Research Laboratory Electronics and Telecommunications Research Institute) ;
  • Heo, Jong (Department of Materials Science and Engineering, School of Environmental Engineering, Pohang University of Science and Technology)
  • 최용규 (전자통신연구원 원천기술연구본부) ;
  • 김경헌 (전자통신연구원 원천기술연구본부) ;
  • 허종 (포항공과대학교 재료금속공학과/환경공학부)
  • Published : 1998.08.01

Abstract

Ternary heavy metal oxide glasses in the $PbO-Bi_2O_3-Ga_2O_3$ system doped with $Er_2O_3$ were prepared and their spectroscopic properties, such as radiative transition probability, calculated and measured radiative lifetimes and cross-sections of 1.5 $\mu\textrm{m}$ and 2.7 $\mu\textrm{m}$ emissions were analyzed. Enhanced quantum efficiencies of some electronic transitions were evident mainly because of the low vibrational phonon energy ($~500cm^{-1}$) inherent in the host glasses. This seems to be the main reason for obtaining the 2.7 $\mu\textrm{m}$ luminescence which is normally quenched in the conventional oxide glasses. In addition, green and red fluorescence emissions were observed through the frequency upconversion processes of the 798 nm excitation. Non-radiative transition due to the multiphonon relaxation is a dominant lifetime-shortening mechanism in the 4f-4f transitions in $Er^{3+}$ ion except for the $^4S_{3/2}{\rightarrow}^4I_{15/2}$ transition where a non-radiative transfer to band-gap excitation of the host glasses is dominant. Melting of glasses under an inert gas atmosphere and (or) addition of the typical glass-network former into glasses is necessary in order to enhance the quantum efficiency of the transition.

$Er_2O_3$를 첨가한 $PbO-Bi_2O_3-Ga_2O_3$ 삼성분계 중금속 산화물 유리로부터 발생하는 $1.5\mu\textrm{m}$와 2.7$\mu\textrm{m}$ 등의 형광에 대하여 복사 천이율, 형광 수명, 흡수 및 유도 방출 단면적 등을 조사하였다. 중금속 산화물 유리의 낮은 포논 에너지($~500cm^{-1}$)로 인하여 기존 산화물 유리로부터 관찰할 수 없었던 형광들의 양자 효율이 크게 높아졌으며 방출 단면적도 증가하였다. 한편, 798 nm 여기광의 상향 전이를 통한 녹색과 적색의 형광이 방출됨을 확인하였고, 각 에너지 준위의 형광 수명을 이용하여 다중포논 완화(multiphonon relaxation)를 정량적으로 규명하였다. $Er^{3+}:^4S_{3/2}{\rightarrow}^4I_{15/2}$ 천이에 의한 녹색 형광은 기지 유리(host glass)의 밴드 갭(band gap)흡수에 의한 비복사 천이의 영향을 받으므로 이 형광의 양자 효율을 높이기 위해서는 유리를 불활성 기체 분위기에서 용융하거나 자외선쪽 투과단이 짧은 유리 망목 형성제(glass-vetwork former)가 첨가된 기지 조성을 선택하는 것이 바람직하다.

Keywords

References

  1. Opt. Lett v.20 no.5 D. R. Simons;A. J. Faber;H. de Waal
  2. J. Non-Cryst. Solids v.184 W.G. Jordan;A. Jha;M. Lunt;S.T. Davey;R. Wyatt;W.J. Rothwell
  3. J. Non-Cryst. Solids v.213;214 S.P. Morgan;D. Furniss;A.B. Seddon;M.W. Moore
  4. J. Am. Ceram. Soc. v.75 no.9 W. H. Dumbaugh;J. C. Lapp
  5. J. Non-Cryst. Solids v.217 Y. G. Choi;J. Heo
  6. J. Non-Cryst. Solids v.77 F. Miyaji;S. sakka
  7. J. Non-Cryst. Solids v.175 F. Miyaji;T. Yoko;J. Jin;S. Sakka;T. Fukunaga;M. Misawa
  8. J. Non-Cryst. Solids v.221 Y. G. Choi;J. Heo;V. A. Chernov
  9. J. Non-Cryst. Solids v.171 H. Lin;L. W. Dechent;D. E. Day;J. O. Stoffer
  10. Appl. Phys. Lett. v.54 no.15 D. W. Hall;M. A. Newhouse;N. F. Borrelli;W. H. Dumbaugh;D. L. Weudman
  11. New Glass v.10 no.4 K. Kamiya;H. Nasu
  12. OECC '97 Seoul v.9D-42 H. Ono;M. Yamada;T. Kanamori;S. Sudo;Y. Ohishi
  13. 99th Annual Meeting of Am. Ceram. Soc. Cincinnati S. Tanabe;J. D. Prohaska;E. Snitzer
  14. J. Non-Cryst. Solids v.161 S. C. Goh
  15. Phys. Rev. v.127 no.3 B. R. Judd
  16. J. Chem. Phys. v.37 no.3 G. S. Ofelt
  17. Phys. Rev. v.157 no.2 M. J. Weber
  18. J. Non-Cryst. Solids v.162 X. Zou;T. Izumitani
  19. Phys. Rev. B v.56 no.15 M.P. Hehlen;N.J. Cockroft;T. R. Gosnell;A. J. Bruce
  20. IEEE J. Quant. Electro v.28 no.47 C. Li;C. Wyon;R. Moncorge
  21. IEEE J. Quant. Electro v.28 no.11 S. A. Payne;L. L. Chase;L. K. Smith;W. L. Kway;W. F. Krupke
  22. Phys. Rev. v.136 no.4A D. E. McCumber
  23. Opt. Lett. v.16 no.4 W. J. Miniscalco;R. S. Quimby
  24. J. Am. Ceram. Soc. v.77 no.9 S. Inoue;A. Nukui;K. Soga;A. Makishima
  25. Phys. Rev. v.16 no.1 C. B. Layne;W. H. Lowdermilk;M. J. Weber