DOI QR코드

DOI QR Code

Analysis of Lateral-mode Characteristics of 850-nm MQW GaAs/(Al,Ga)As Laser Diodes

850 nm GaAs/AlGaAs MQW LD의 Lateral-mode 특성 연구

  • 양정택 (연세대학교 전기전자공학과, 초고속 회로 및 시스템 연구실) ;
  • 곽정근 (큐에스아이) ;
  • 최안식 (큐에스아이) ;
  • 김태경 (큐에스아이) ;
  • 최우영 (연세대학교 전기전자공학과, 초고속 회로 및 시스템 연구실)
  • Received : 2021.01.05
  • Accepted : 2021.03.02
  • Published : 2021.04.25

Abstract

The lateral-mode characteristics of 850-nm GaAs/(Al,Ga)As multiple-quantum-well laser diodes and their influence on the kinks in output optical power are investigated. For the investigation, self-consistent electro-thermal-optical simulation and measurement of fabricated devices are used. From this investigation, the optimal P-cladding thickness that provides single-lateral-mode operation is determined, so that high beam quality can be achieved even at high output powers.

850 nm 대역의 발진 파장을 갖는 GaAs/AlGaAs 다중양자우물 레이저 다이오드의 lateral-mode 특성과 이 특성이 출력 광파워 kink에 미치는 영향을 조사하였다. 이를 위해 전기적-열적-광학적 시뮬레이션을 self-consistent하게 수행하고, 제작된 레이저 다이오드 소자들을 측정하였다. 연구 결과를 바탕으로 높은 출력 파워에서도 single lateral-mode를 유지해서 좋은 beam quality를 유지할 수 있는 최적의 P-cladding 두께를 결정하였다.

Keywords

References

  1. L. Mei and M. Brydegaard, "Continuous-wave differential absorption lidar," Laser Photonics Rev. 9, 629-636 (2015). https://doi.org/10.1002/lpor.201400419
  2. X. Ai, R. Nock, J. G. Rarity, and N. Dahnoun, "High-resolution random-modulation cw lidar," Appl. Opt. 50, 4478-4488 (2011). https://doi.org/10.1364/AO.50.004478
  3. G. An, Y. Wang, J. Han, H. Cai, Z. Jiang, M. Gao, S. Wang, W. Zhang, H. Wang, L. Xue, and J. Zhou, "Deleterious processes of a diode-pumped cesium vapour hollow-core photonic-crystal fiber laser," High Power Laser Sci. Eng. 4, e37 (2016). https://doi.org/10.1017/hpl.2016.37
  4. D. A. Vinokurov, V. A. Kapitonov, A. V. Lyutetskiy, D. N. Nikolaev, N. A. Pikhtin, S. O. Slipchenko, A. L. Stankevich, V. V. Shamakhov, L. S. Vavilova, and I. S. Tarasov, "850-nm diode lasers based on AlGaAsP/GaAs heterostructures," Semiconductors 46, 1321-1325 (2012). https://doi.org/10.1134/S106378261210020X
  5. S. Banerjee, P. Mason, J. Phillips, J. Smith, T. Butcher, J. Spear, M. De Vido, G. Quinn, D. Clarke, K. Ertel, C. Hernandez-Gomez, C. Edwards, and J. Collier, "Pushing the boundaries of diode-pumped solid-state lasers for high-energy applications," High Power Laser Sci. Eng. 8, e20 (2020). https://doi.org/10.1017/hpl.2020.20
  6. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004). https://doi.org/10.1364/OPEX.12.006088
  7. L. Zhong and X. Ma, "Recent developments in high power semiconductor diode lasers," in Optoelectronics-Devices and Applications, P. Predeep, Ed., (InTech, Rijeka, Croatia, 2011), pp. 325-348.
  8. F. X. Daiminger, F. Dorsch, and D. Lorenzen, "High power laser diodes, laser diode modules, and their applications," Proc. SPIE 3682, 13-23 (1998). https://doi.org/10.1117/12.334785
  9. A. V. Aluev, A. M. Morozyuk, M. Sh Kobyakova, and A. A. Chel'nyi, "High-power 2.5-W cw AlGaAs/GaAs laser diodes," Quantum Electron. 31, 627-628 (2001). https://doi.org/10.1070/QE2001v031n07ABEH002016
  10. B. L. Volodin, S. V. Dology, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings," Opt. Lett. 29, 1891-1893 (2004). https://doi.org/10.1364/OL.29.001891
  11. J. Piprek, "Self-consistent far-field blooming analysis for high-power Fabry-Perot laser diodes," Proc. SPIE 8619, 861910 (2013). https://doi.org/10.1117/12.2004665
  12. J. Piprek, "Self-consistent analysis of thermal far-field blooming of broad-area laser diodes," Opt. Quantum Electron. 45, 581-588 (2013). https://doi.org/10.1007/s11082-012-9640-6
  13. P. Crump, S. Boldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, "Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers," Semicond. Sci. Technol. 27, 045001 (2012). https://doi.org/10.1088/0268-1242/27/4/045001
  14. A. Bachmann, C. Lauer, M. Furitsch, H. Konig, M. Muller, and U. Strauss, "Recent brightness improvements of 976 nm high power laser bars," Proc. SPIE 10086, 1008602 (2017).
  15. J. Piprek, "Inverse thermal lens effects on the far-field blooming of broad area laser diodes," IEEE Photonics Technol. Lett. 25, 958-960 (2013). https://doi.org/10.1109/LPT.2013.2255590
  16. J. H. Jacob, H. M. Eppich, G. O. Campbell, and W. Sun, "Methods and systems for reducing slow axis divergence in laser diodes," U.S. Patent 9001855B1 (2015).
  17. Y. Kim, J. T. Yang, and W. Y. Choi, "High-power broad-area laser diode performance improvement with a double pedestal structure", Jpn. J. Appl. Phys. 58, 042004 (2019). https://doi.org/10.7567/1347-4065/ab0c71
  18. Y. Gu, Y. Fu, H. Lu, and Y. Cui, "The beam characteristics of high power diode laser stack," Mater. Sci. Eng. 317, 012007 (2018).
  19. PICS3D. (2019), Crosslight Software Inc. Accessed Date (30 Dec. 2020). Available : https://crosslight.com/products/pics3d/
  20. L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, 2nd ed., (John Wiley & Sons, NJ, USA, 2012), Chapter 2.
  21. N. A. Pikhtin, S. O. Slipchenko, I. S. Shashkin, M. A. Ladugin, A. A. Marmalyuk, A. A. Podoskin, and I. S. Tarasov, "The temperature dependence of internal optical losses in semiconductor lasers (λ = 900-920 nm)," Semiconductors 44, 1365-1369 (2010). https://doi.org/10.1134/S1063782610100210
  22. J.-T. Yang, Y. Kim, M. Pournoury, J.-B. Lee, D.-S. Bang, T.- K. Kim, and W.-Y. Choi, "Influence of emitter width on the performance of 975-nm (In,Ga)(As,P)/(Al,Ga)As high-power laser diodes," Curr. Opt. Photon. 3, 445-450 (2019). https://doi.org/10.3807/copp.2019.3.5.445
  23. C. J. Hages, A. Redinger, S. Levcenko, H. Hempel, M. J. Koeper, R. Agrawal, D. Greiner, C. A. Kaufmann, and T. Unold, "Identifying the real minority carrier lifetime in nonideal semiconductors: a case study of kesterite materials," Adv. Energy Mater. 7, 1700167 (2017). https://doi.org/10.1002/aenm.201700167
  24. J. Piprek, J. K. White, and A. J. SpringThorpe, "What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?," Quantum Electron. 38, 1253-1259 (2002). https://doi.org/10.1109/JQE.2002.802441
  25. M. Achtenhagen, A. A. Hardy, and C. S. Harder, "Coherent kinks in high-power ridge waveguide laser diodes," J. Lightwave Technol. 24, 2225-2232 (2006). https://doi.org/10.1109/JLT.2006.872313
  26. G. Hunziker and C. Harder, "Beam quality of InGaAs ridge lasers at high output power," Appl. Opt. 34, 6118-6122 (1995). https://doi.org/10.1364/AO.34.006118