Browse > Article
http://dx.doi.org/10.3807/KJOP.2021.32.2.055

Analysis of Lateral-mode Characteristics of 850-nm MQW GaAs/(Al,Ga)As Laser Diodes  

Yang, Jung-Tack (Department of Electrical and Electronic Engineering, Yonsei University)
Kwak, Jung-Geun (QSI)
Choi, An-Sik (QSI)
Kim, Tae-Kyung (QSI)
Choi, Woo-Young (Department of Electrical and Electronic Engineering, Yonsei University)
Publication Information
Korean Journal of Optics and Photonics / v.32, no.2, 2021 , pp. 55-61 More about this Journal
Abstract
The lateral-mode characteristics of 850-nm GaAs/(Al,Ga)As multiple-quantum-well laser diodes and their influence on the kinks in output optical power are investigated. For the investigation, self-consistent electro-thermal-optical simulation and measurement of fabricated devices are used. From this investigation, the optimal P-cladding thickness that provides single-lateral-mode operation is determined, so that high beam quality can be achieved even at high output powers.
Keywords
High-power laser diode; Lateral-mode characteristics; Beam quality;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Mei and M. Brydegaard, "Continuous-wave differential absorption lidar," Laser Photonics Rev. 9, 629-636 (2015).   DOI
2 X. Ai, R. Nock, J. G. Rarity, and N. Dahnoun, "High-resolution random-modulation cw lidar," Appl. Opt. 50, 4478-4488 (2011).   DOI
3 G. An, Y. Wang, J. Han, H. Cai, Z. Jiang, M. Gao, S. Wang, W. Zhang, H. Wang, L. Xue, and J. Zhou, "Deleterious processes of a diode-pumped cesium vapour hollow-core photonic-crystal fiber laser," High Power Laser Sci. Eng. 4, e37 (2016).   DOI
4 D. A. Vinokurov, V. A. Kapitonov, A. V. Lyutetskiy, D. N. Nikolaev, N. A. Pikhtin, S. O. Slipchenko, A. L. Stankevich, V. V. Shamakhov, L. S. Vavilova, and I. S. Tarasov, "850-nm diode lasers based on AlGaAsP/GaAs heterostructures," Semiconductors 46, 1321-1325 (2012).   DOI
5 S. Banerjee, P. Mason, J. Phillips, J. Smith, T. Butcher, J. Spear, M. De Vido, G. Quinn, D. Clarke, K. Ertel, C. Hernandez-Gomez, C. Edwards, and J. Collier, "Pushing the boundaries of diode-pumped solid-state lasers for high-energy applications," High Power Laser Sci. Eng. 8, e20 (2020).   DOI
6 Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004).   DOI
7 L. Zhong and X. Ma, "Recent developments in high power semiconductor diode lasers," in Optoelectronics-Devices and Applications, P. Predeep, Ed., (InTech, Rijeka, Croatia, 2011), pp. 325-348.
8 F. X. Daiminger, F. Dorsch, and D. Lorenzen, "High power laser diodes, laser diode modules, and their applications," Proc. SPIE 3682, 13-23 (1998).   DOI
9 A. V. Aluev, A. M. Morozyuk, M. Sh Kobyakova, and A. A. Chel'nyi, "High-power 2.5-W cw AlGaAs/GaAs laser diodes," Quantum Electron. 31, 627-628 (2001).   DOI
10 B. L. Volodin, S. V. Dology, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings," Opt. Lett. 29, 1891-1893 (2004).   DOI
11 J. Piprek, "Self-consistent far-field blooming analysis for high-power Fabry-Perot laser diodes," Proc. SPIE 8619, 861910 (2013).   DOI
12 J. Piprek, "Self-consistent analysis of thermal far-field blooming of broad-area laser diodes," Opt. Quantum Electron. 45, 581-588 (2013).   DOI
13 J. H. Jacob, H. M. Eppich, G. O. Campbell, and W. Sun, "Methods and systems for reducing slow axis divergence in laser diodes," U.S. Patent 9001855B1 (2015).
14 P. Crump, S. Boldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, "Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers," Semicond. Sci. Technol. 27, 045001 (2012).   DOI
15 A. Bachmann, C. Lauer, M. Furitsch, H. Konig, M. Muller, and U. Strauss, "Recent brightness improvements of 976 nm high power laser bars," Proc. SPIE 10086, 1008602 (2017).
16 J. Piprek, "Inverse thermal lens effects on the far-field blooming of broad area laser diodes," IEEE Photonics Technol. Lett. 25, 958-960 (2013).   DOI
17 Y. Kim, J. T. Yang, and W. Y. Choi, "High-power broad-area laser diode performance improvement with a double pedestal structure", Jpn. J. Appl. Phys. 58, 042004 (2019).   DOI
18 Y. Gu, Y. Fu, H. Lu, and Y. Cui, "The beam characteristics of high power diode laser stack," Mater. Sci. Eng. 317, 012007 (2018).
19 PICS3D. (2019), Crosslight Software Inc. Accessed Date (30 Dec. 2020). Available : https://crosslight.com/products/pics3d/
20 L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, 2nd ed., (John Wiley & Sons, NJ, USA, 2012), Chapter 2.
21 N. A. Pikhtin, S. O. Slipchenko, I. S. Shashkin, M. A. Ladugin, A. A. Marmalyuk, A. A. Podoskin, and I. S. Tarasov, "The temperature dependence of internal optical losses in semiconductor lasers (λ = 900-920 nm)," Semiconductors 44, 1365-1369 (2010).   DOI
22 M. Achtenhagen, A. A. Hardy, and C. S. Harder, "Coherent kinks in high-power ridge waveguide laser diodes," J. Lightwave Technol. 24, 2225-2232 (2006).   DOI
23 J.-T. Yang, Y. Kim, M. Pournoury, J.-B. Lee, D.-S. Bang, T.- K. Kim, and W.-Y. Choi, "Influence of emitter width on the performance of 975-nm (In,Ga)(As,P)/(Al,Ga)As high-power laser diodes," Curr. Opt. Photon. 3, 445-450 (2019).   DOI
24 C. J. Hages, A. Redinger, S. Levcenko, H. Hempel, M. J. Koeper, R. Agrawal, D. Greiner, C. A. Kaufmann, and T. Unold, "Identifying the real minority carrier lifetime in nonideal semiconductors: a case study of kesterite materials," Adv. Energy Mater. 7, 1700167 (2017).   DOI
25 J. Piprek, J. K. White, and A. J. SpringThorpe, "What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?," Quantum Electron. 38, 1253-1259 (2002).   DOI
26 G. Hunziker and C. Harder, "Beam quality of InGaAs ridge lasers at high output power," Appl. Opt. 34, 6118-6122 (1995).   DOI