• 제목/요약/키워드: q-binomial

검색결과 21건 처리시간 0.021초

그래프 임베딩과 관련된 이항 트리에서의 Q-에지 번호매김에 관한 연구 (The Research of Q-edge Labeling on Binomial Trees related to the Graph Embedding)

  • 김용석
    • 전자공학회논문지CI
    • /
    • 제42권1호
    • /
    • pp.27-34
    • /
    • 2005
  • 본 논문에서는 그래프 임베딩 문제와 관련된 이항트리에서의 Q-에지 번호매김 방법을 제안한다. 이러한 연구결과는 신뢰성이 높은 통신망을 설계하는 최적화 문제인 "n 개의 노드와 e 개의 에지를 가지면서 연결도가 최대인 그래프를 구성하라."를 해결한 Harary 그래프의 일반화인 원형군 그래프(circulant graph)의 점프열로 Q-에지번호들을 이용하면 연결도가 최대인 신뢰성이 높은 새로운 상호연결망(interconnection networks)의 위상을 설계할 수 있다. 그리고 이러한 위상은 이항트리를 스패닝 트리로 가지므로 최적방송이 가능하다.

SOME SUMS VIA EULER'S TRANSFORM

  • Nese Omur;Sibel Koparal;Laid Elkhiri
    • 호남수학학술지
    • /
    • 제46권3호
    • /
    • pp.365-377
    • /
    • 2024
  • In this paper, we give some sums involving the generalized harmonic numbers Hrn (σ) and the (q, r)-binomial coefficient $\left({L \atop k}\right)_{q,r}$ by using Euler's transform. For example, for (c, r) ∈ ℤ+ × ℝ+, $${\sum_{n=0}^{\infty}}{\sum_{k=0}^{n}}\,(-1)^k\,\left({n+r \atop n-k}\right)\frac{c^{n+1}H^{r-1}_k({\sigma})}{(n+1)(1+c)^{n+1}}=-(c+{\frac{1}{{\sigma}}})\,{\ln}\,(1+c{\sigma})+c,$$ and $${\sum_{k=0}^{n}}\left({n \atop k}\right)\left({L \atop k}\right)_{2,r}={\sum_{j=0}^{n}}{\sum_{k=0}^{j}}(-1)^k\left({j-k+2L+r \atop j-k}\right)\left({r \atop n-j}\right)\left({L \atop k}\right)_2,$$ where σ is appropriate parameter, Hrn (σ) is the generalized hyperharmonic number of order r and $\left({L \atop k}\right)_q$ is the q-binomial coefficient.

IDENTITIES INVOLVING q-ANALOGUE OF MODIFIED TANGENT POLYNOMIALS

  • JUNG, N.S.;RYOO, C.S.
    • Journal of applied mathematics & informatics
    • /
    • 제39권5_6호
    • /
    • pp.643-654
    • /
    • 2021
  • In this paper, we define a modified q-poly-Bernoulli polynomials of the first type and modified q-poly-tangent polynomials of the first type by using q-polylogarithm function. We derive some identities of the modified polynomials with Gaussian binomial coefficients. We also explore several relations that are connected with the q-analogue of Stirling numbers of the second kind.

ON FULLY MODIFIED q-POLY-EULER NUMBERS AND POLYNOMIALS

  • C.S. RYOO
    • Journal of Applied and Pure Mathematics
    • /
    • 제6권1_2호
    • /
    • pp.1-11
    • /
    • 2024
  • In this paper, we define a new fully modified q-poly-Euler numbers and polynomials of the first type by using q-polylogarithm function. We derive some identities of the modified polynomials with Gaussian binomial coefficients. We also explore several relations that are connected with the q-analogue of Stirling numbers of the second kind.

FIXED-WIDTH PARTITIONS ACCORDING TO THE PARITY OF THE EVEN PARTS

  • John M. Campbell
    • 대한수학회보
    • /
    • 제60권4호
    • /
    • pp.1017-1024
    • /
    • 2023
  • A celebrated result in the study of integer partitions is the identity due to Lehmer whereby the number of partitions of n with an even number of even parts minus the number of partitions of n with an odd number of even parts equals the number of partitions of n into distinct odd parts. Inspired by Lehmer's identity, we prove explicit formulas for evaluating generating functions for sequences that enumerate integer partitions of fixed width with an even/odd number of even parts. We introduce a technique for decomposing the even entries of a partition in such a way so as to evaluate, using a finite sum over q-binomial coefficients, the generating function for the sequence of partitions with an even number of even parts of fixed, odd width, and similarly for the other families of fixed-width partitions that we introduce.

ON EULERIAN q-INTEGRALS FOR SINGLE AND MULTIPLE q-HYPERGEOMETRIC SERIES

  • Ernst, Thomas
    • 대한수학회논문집
    • /
    • 제33권1호
    • /
    • pp.179-196
    • /
    • 2018
  • In this paper we extend the two q-additions with powers in the umbrae, define a q-multinomial-coefficient, which implies a vector version of the q-binomial theorem, and an arbitrary complex power of a JHC power series is shown to be equivalent to a special case of the first q-Lauricella function. We then present several q-analogues of hypergeometric integral formulas from the two books by Exton and the paper by Choi and Rathie. We also find multiple q-analogues of hypergeometric integral formulas from the recent paper by Kim. Finally, we prove several multiple q-hypergeometric integral formulas emanating from a paper by Koschmieder, which are special cases of more general formulas by Exton.

q-EXTENSION OF A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN THREE VARIABLES

  • Choi, June-Sang
    • 호남수학학술지
    • /
    • 제34권3호
    • /
    • pp.327-340
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subsequently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. Very recently, Choi defined a $q$-extension of the generalized two variable Gottlieb polynomials ${\varphi}^2_n({\cdot})$ and presented their several generating functions. Also, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in m variables to give two generating functions of the generalized Gottlieb polynomials ${\varphi}^m_n({\cdot})$. Here, in the sequel of the above results for their possible general $q$-extensions in several variables, again, we aim at trying to define a $q$-extension of the generalized three variable Gottlieb polynomials ${\varphi}^3_n({\cdot})$ and present their several generating functions.

FULLY MODIFIED (p, q)-POLY-TANGENT POLYNOMIALS WITH TWO VARIABLES

  • N.S. JUNG;C.S. RYOO
    • Journal of applied mathematics & informatics
    • /
    • 제41권4호
    • /
    • pp.753-763
    • /
    • 2023
  • In this paper, we introduce a fully modified (p, q)-poly tangent polynomials and numbers of the first type. We investigate analytic properties that is related with (p, q)-Gaussian binomial coefficients. We also define (p, q)-Stirling numbers of the second kind and fully modified (p, q)-poly tangent polynomials and numbers of the first type with two variables. Moreover, we derive some identities are concerned with the modified tangent polynomials and the (p, q)-Stirling numbers.