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FULLY MODIFIED (p, q)-POLY-TANGENT POLYNOMIALS

WITH TWO VARIABLES†

N.S. JUNG, C.S. RYOO∗

Abstract. In this paper, we introduce a fully modified (p, q)-poly tangent
polynomials and numbers of the first type. We investigate analytic prop-

erties that is related with (p, q)-Gaussian binomial coefficients. We also

define (p, q)-Stirling numbers of the second kind and fully modified (p, q)-
poly tangent polynomials and numbers of the first type with two variables.

Moreover, we derive some identities are concerned with the modified tan-

gent polynomials and the (p, q)-Stirling numbers.
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1. Introduction

These days, many researchers are interested in the applications of q-numbers
and (p, q)-numbers. In areas of quantum mechanics, physics and mathematics,
the applying theory is studied and extended actively. Especially, mathematicians
in the fields of combinatorics, number theory and special functions, frequently
explorer that(cf [4,5,6,8,9,10,11]). We also investigate the generalization of poly
Bernoulli polynomials and poly tangent polynomials involving (p, q)-numbers.

Throughout this paper, we use the following notations. Z denotes the set of
integers, Z+ denotes the set of nonnegative integers, R denotes the set of all real
numbers and C denotes the set of complex numbers, respectively.

The (p, q)-numbers are known by

[n]p,q =
pn − qn

p− q
,

where 0 < q < p ≤ 1. When p = 1, we have [n]p,q = [n]q and limq→1[n]q = n.
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The (p, q)-factorial of n of order k is defined as

[n](k)p,q = [n]p,q[n− 1]p,q · · · [n− k + 1]p,q,

for k = 1, 2, 3, · · · . If k = n, it is denoted [n]p,q! = [n]p,q[n − 1]p,q · · · [1]p,q that
is called (p, q)-factorial of n. The (p, q)-Gaussian binomial formula is defined by

(x+ a)np,q =

n∑
k=0

[
n
k

]
p,q

p(
k
2)q(

n−k
2 )an−kxk,

with the (p, q)-Gaussian binomial coefficient,

[
n
k

]
p,q

=
[n]p,q !

[k]p,q ![n−k]p,q !
(n ≥ k).

In [12], two type of the (p, q)-exponential functions are given as below

∞∑
n=0

p(
n
2) xn

[n]p,q!
= ep,q(x),

∞∑
n=0

q(
n
2) xn

[n]p,q!
= Ep,q(x).

(1.1)

The (p, q)-analogue of polylogarithm function Lik,p,q is known by

Lik,p,q(x) =

∞∑
n=1

xn

[n]kp,q
, (k ∈ Z)(cf [6, 11]).

In [5], we defined fully modified q-poly-Bernoulli polynomials B̃
(k)
n,q(x) of the

first type and fully modified q-poly-tangent polynomials T̃
(k)
n,q (x) of the first type.

Definition 1.1. For n ∈ Z+, k ∈ Z, q ∈ R and 0 < q < 1, fully modified

q-poly-Bernoulli polynomials B̃
(k)
n,q(x) of the first type and the fully modified

q-poly-tangent polynomials T̃
(k)
n,q (x) of the first type are defined by

Lik,q(1− eq(−t))

(eq(t)− 1)
eq(xt) =

∞∑
n=0

B̃(k)
n,q(x)

tn

[n]q!
,

[2]qLik,q(1− eq(−t))

t(eq(2t) + 1)
eq(xt) =

∞∑
n=0

T̃ (k)
n,q (x)

tn

[n]q!
.

(1.2)

When x = 0, B̃
(k)
n,q = B̃

(k)
n,q(0), T̃

(k)
n,q = T̃

(k)
n,q (0) are called fully modified q-poly-

Bernoulli numbers of the first type and fully modified q-poly-tangent numbers of

the first type. If q → 1 in (1.2), we have the poly-Bernoulli polynomials B
(k)
n (x)

and the poly-tangent polynomials T
(k)
n (x), respectively.

Substitute k = 1, q → 1 in (1.2), we have the ordinary Bernoulli polynomials
Bn(x)and the ordinary tangent polynomials Tn(x), respectively.

∞∑
n=0

Bn(x)
tn

n!
=

t

et − 1
ext,

∞∑
n=0

Tn(x)
tn

n!
=

2

e2t + 1
ext.
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Now, we define a special extension of poly-Bernoulli polynomials from (p, q)-
analogue of exponential functions and polylogarithmn function.

Definition 1.2. Let n ∈ Z+, k ∈ Z, p, q ∈ R such that 0 < q < p ≤ 1. We define

fully modified (p, q)-poly-Bernoulli polynomials B̃
(k)
n,q(x) of the first type by

∞∑
n=0

B̃(k)
n,p,q(x)

tn

n!
=

Lik,p,q(1− ep,q(−t))

(ep,q(t)− 1)
ep,q(xt). (1.3)

When x = 0, B̃
(k)
n,p,q = B̃

(k)
n,p,q(0) are called fully modified (p, q)-poly-Bernoulli

numbers of the first type. If p = 1 in (1.3), we get B̃
(k)
n,p,q(x) = B̃

(k)
n,q(x).

Definition 1.3. For n ∈ Z+, k ∈ Z, 0 < q < p ≤ 1, the (p, q)-Bernoulli polyno-
mials of order l are defined by

∞∑
n=0

B⟨l⟩
n,p,q(x)

tn

n!
=

(
t

ep,q(t)− 1

)l

ep,q(xt). (1.4)

In this paper, we define fully modified (p, q)-poly-Bernoulli polynomials of
the first type and fully modified (p, q)-poly-tangent polynomials of the first type.
Furthermore, we derive a connection of the two polynomials and investigate some
identities that are concerned with (p, q)-Gaussian binomials coefficients. We also
construct fully modified (p, q)-poly-tangent polynomials of the first type with two
variables using (p, q)-exponential function and observe recurrence formula that
are related with (p, q)-Stirling numbers.

2. Some identities of fully modified (p, q)-poly-tangent polynomials of
the first type

In this section, we introduce a fully modified (p, q)-poly-tangent numbers

T
(k)
n,p,q and polynomials T

(k)
n,p,q(x) of the first type by the generating functions.

We explore some identities of the polynomials and find a relation connected
with (p, q)-analogue of the ordinary tangent polynomials.

Definition 2.1. For n ∈ Z+, p, q ∈ R such that 0 < q < p ≤ 1, we define
(p, q)-tangent polynomials Tn,p,q(x) of the first type by

∞∑
n=0

Tn,p,q(x)
tn

[n]p,q!
=

[2]p,q
ep,q(2t) + 1

ep,q(xt).

Definition 2.2. For n ∈ Z+, k ∈ Z, p, q ∈ R such that 0 < q < p ≤ 1, we define

a fully modified (p, q)-poly-tangent polynomials T̃
(k)
n,p,q(x) of the first type by

∞∑
n=0

T̃ (k)
n,p,q(x)

tn

n!
=

[2]p,qLik,p,q(1− ep,q(−t))

t(ep,q(2t) + 1)
ep,q(xt). (2.1)
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When x = 0, T̃
(k)
n,p,q = T̃

(k)
n,p,q(0) are called fully modified (p, q)-poly-tangent

numbers of the first type. Note that p = 1, [n]p,q = [n]q, and T̃
(k)
n,p,q(x) = T̃

(k)
n,q (x).

Theorem 2.3. For n ∈ Z+, k ∈ Z and p, q ∈ R such that 0 < q < p ≤ 1, the
following result holds

T̃ (k)
n,p,q(x) =

n∑
l=0

[
n
l

]
p,q

p(
n−l
2 ) T̃

(k)
l,p,q xn−l.

Using the definition of (p, q)-exponential function in (1.1), we derive the next
theorem. The result shows that fully modified (p, q)-poly-tangent polynomials of
the first type are connected with the fully modified (p, q)-poly-Bernoulli numbers
and the (p, q)-analogue of the ordinary tangent polynomials.

Theorem 2.4. For n be a nonnegative integer, k ∈ Z and 0 < q < p ≤ 1, we
get

T̃ (k)
n,p,q(x) =

n∑
l=0

[
n
a

]
p,q

[
a
l

]
p,q

[n− a+ 1]p,q
p(

n−a+1
2 ) B̃

(k)
l,p,q Ta−l,p,q(x).

Proof. Let 0 < q < p ≤ 1. From the definitions of (p, q)-polylogarithm functon
and (p, q)-exponential function, we obtain
∞∑

n=0

T̃ (k)
n,p,q(x)

tn

[n]p,q!
=

[2]p,qLik,p,q(1− ep,q(−t))

t(ep,q(t) + 1)
ep,q(xt)

=

∞∑
n=0

B̃(k)
n,p,q

tn

[n]p,q!

∞∑
n=0

Tn,p,q(x)
tn

[n]p,q!

∞∑
n=0

p(
n+1
2 )

[n+ 1]p,q

tn

[n]p,q!

=

∞∑
n=0

n∑
a=0

a∑
l=0

[
n
a

]
p,q

[
a
l

]
p,q

p(
n−a+1

2 )

[n− a+ 1]p,q
B̃

(k)
l,p,q Ta−l,p,q(x)

tn

[n]p,q!
.

□

By definition of (p, q)-exponential function, (2.1) is expressed with (p, q)-
Gaussian binomial coefficient and (p, q)-analogue of ordinary tangent polyno-
mials.

Theorem 2.5. Let n ∈ N, k ∈ Z and p, q ∈ R such that 0 < q < p ≤ 1. Then
we have

[n]p,qT̃
(k)
n−1,p,q(x)

=

∞∑
l=0

l+1∑
i=0

n∑
a=0

a∑
n1 + · · ·+ ni−1 = n
n1, · · · , ni−1 ≥ 0

[
n

a, n1, · · · , ni−1

]
p,q

(
l+1
i

)
[l + 1]kp,q

(−1)a+i

× p(
a−n1

2 )+(n1−n2
2 )+···+(ni−2−ni−1

2 )Tn−a,p,q(x).
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Proof. For n ∈ N, k ∈ Z and p, q ∈ R such that 0 < q < p ≤ 1, using (1.1), we
get

∞∑
n=0

T̃ (k)
n,p,q(x)

tn

[n]p,q!

=
[2]p,qLik,p,q(1− ep,q(−t))

t(ep,q(2t) + 1)
ep,q(xt)

=

∞∑
l=0

(1− ep,q(−t))l+1

[l + 1]kp,q

[2]p,q
t(ep,q(2t) + 1)

ep,q(xt)

=
1

t

∞∑
l=0

l+1∑
i=0

(−1)i
(
l+1
i

)
[l + 1]kp,q

∞∑
n=0

Tn,p,q(x)
tn

[n]p,q!

×
∞∑

n=0

n∑
n1 + · · ·+ ni−1 = n
n1, · · · , ni−1 ≥ 0

[
n

n1, · · · , ni−1

]
p,q

(−1)n

× p(
n−n1

2 )+(n1−n2
2 )+···+(ni−2−ni−1

2 ) tn

[n]p,q!

=
1

t

∞∑
n=0

n∑
a=0

a∑
n1 + · · ·+ ni−1 = a
n1, · · · , ni−1 ≥ 0

∞∑
l=0

l+1∑
i=0

[
n

a, n1, · · · , ni−1

]
p,q

(
l+1
i

)
[l + 1]kp,q

× (−1)a+ip(
a−n1

2 )+(n1−n2
2 )+···+(ni−2−ni−1

2 )Tn−a,p,q(x)
tn

[n]p,q!
.

Therefore, we obtain

∞∑
n=1

[n]p,qT̃
(k)
n−1,p,q(x)

tn

[n]p,q!

=

∞∑
n=0

n∑
a=0

∞∑
l=0

l+1∑
i=0

a∑
n1 + · · ·+ ni−1 = a
n1, · · · , ni−1 ≥ 0

[
n

a, n1, · · · , ni−1

]
p,q

(
l+1
i

)
[l + 1]kp,q

× (−1)a+ip(
a−n1

2 )+(n1−n2
2 )+···+(ni−2−ni−1

2 )Tn−a,p,q(x)
tn

[n]p,q!
.

□

The above result can be expressed with multivariate analogue of (p, q)-Rogers-
Szegö polynomials. Moreover, the equality leads to a result that is represented
with (p, q)-Hermite polynomials.
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3. Properties of the fully modified (p, q)-poly-tangent polynomials of
the first type with two variables

In this section, we introduce fully modified (p, q)-poly-tangent polynomials of
the first type with two variables. We also consider special generating function
of (p, q)-Stirling numbers and investigate some properties that is concerned with
the generating function.

In [4], the authors introduced (q, r, w)-Stirling numbers. Naturally, the gen-
erating series of (p, q)-Stirling numbers of the second kind is defined by

∞∑
n=m

Sp,q,r,w(n+ r + w,m+ r + w)
tn

[n]p,q!
=

(ep,q(t)− 1)m

[m]p,q!
ep,q(rt)Ep,q(wt),

where n,m ∈ Z+ with 0 ≤ m ≤ n.
If r = w = 0, then we get the following generating function.

(ep,q(t)− 1)m

[m]p,q!
=

∞∑
n=m

Sp,q(n,m)
tn

[n]p,q!
. (3.1)

For 0 ≤ n,m ≤ 5, a few values of the (p, q)-Stirling numbers of the second
kind are given as below.

Table 1. Sp,q(n,m)

n
m

0 1 2 3 4

0 1 0 0 0 0
1 0 1 0 0 0
2 0 p 1 0 0

3 0 p3
2p(p2 + pq + q2)

p+ q
1 0

4 0 p6
p2(p2 + q2)(3p2 + 3pq + q2)

p+ q
3p(p2 + q2) 1

It makes that the (p, q)-polylogarithm function Lik,p,q is represented with the
(p, q)-Stirling numbers of the second kind.

Lik,p,q(1− ep,q(−t))

t
=

∞∑
n=0

n+1∑
l=1

[l]p,q!

[l]kp,q[n+ 1]p,q
(−1)l+n+1Sp,q(n+ 1, l)

tn

[n]p,q!

(3.2)
Using the identity in (3.2), we derive the following result which is connected

with (p, q)-Stirling numbers of the second kind and (p, q)-analogue of the ordi-
nary tangent polynomials.
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Theorem 3.1. For n ∈ Z+, k ∈ Z and p, q ∈ R such that 0 < q < p ≤ 1, the
following identity holds

T̃ (k)
n,p,q(x) =

n∑
a=0

a+1∑
l=1

[
n
a

]
p,q

[l]p,q!

[l]kp,q[a+ 1]p,q
(−1)l+a+1Sp,q(a+ 1, l)Tn−a,p,q(x).

Proof. Let n ∈ Z+, k ∈ Z and 0 < q < p ≤ 1. By the recomposition of (p, q)-
polylogarithm function in (3.2), we have

∞∑
n=0

T̃ (k)
n,p,q(x)

tn

n!
=

[2]p,qLik,p,q(1− ep,q(−t))

t(ep,q(2t) + 1)
ep,q(xt)

=

∞∑
n=1

n+1∑
l=1

(−1)l+n+l[l]p,q!

[l]kp,q[n+ 1]p,q
Sp,q(n+ 1, l)

tn

[n]p,q!

∞∑
n=0

Tn,p,q(x)
tn

[n]p,q!

=

∞∑
n=0

n∑
a=0

a+1∑
l=1

[
n
a

]
p,q

(−1)l+a+1[l]p,q!

[l]kp,q[a+ 1]p,q
Sp,q(a+ 1, l)Tn−a,p,q(x)

tn

[n]p,q!
.

Comparing the coefficient both sides, we get

T̃ (k)
n,p,q(x) =

n∑
a=0

a+1∑
l=1

[
n
a

]
p,q

[l]p,q!

[l]kp,q[a+ 1]p,q
(−1)l+a+1Sp,q(a+ 1, l)Tn−a,p,q(x).

□

Furthermore, (3.2) leads the following identity that are constructed with
(p, q)-Stirling numbers and (p, q)-Bernoulli polynomials of order l.

Theorem 3.2. Let n ∈ Z+, k ∈ Z and 0 < q < p ≤ 1. Then we get

T̃ (k)
n,p,q(x) =

n∑
a=0

a∑
i=0

[
n
a

]
p,q

[
a
i

]
p,q[

i+ l
l

]
p,q

Sp,q(i+ l, l)B
⟨l⟩
i,p,q(x)T̃

(k)
n−a,p,q.

Proof. For n ∈ Z+, k ∈ Z and 0 < q < p ≤ 1, fully modified (p, q)-poly-tangent
polynomials can be indicated by formula that include the fully modified (p, q)-
poly-tangent numbers, the (p, q)-Stirling numbers and the (p, q)-poly-Bernoulli
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polynomials of order l.

[2]p,qLik,p,q(1− ep,q(−t))

t(ep,q(2t) + 1)
ep,q(xt)

=

∞∑
n=0

T̃ (k)
n,p,q

tn

[n]p,q!

∞∑
n=l

[l]p,q!Sp,q(n, l)
tn−l

[n]p,q!

∞∑
n=0

B⟨l⟩
n,p,q(x)

tn

[n]p,q!

=

∞∑
n=0

T̃ (k)
n,p,q

tn

[n]p,q!

∞∑
n=0

Sp,q(n+ l, l)[
n+ l
l

]
p,q

tn

[n]p,q!

∞∑
n=0

B⟨l⟩
n,p,q(x)

tn

[n]p,q!

=
∞∑

n=0

n∑
a=0

a∑
i=0

[
n
a

]
p,q

[
a
i

]
p,q

Sp,q(i+ l, l)[
i+ l
l

]
p,q

B
⟨l⟩
i,p,q(x) T̃

(k)
n−a,p,q

tn

[n]p,q!
.

Comparing the coefficient both sides, we get

T̃ (k)
n,p,q(x) =

n∑
a=0

a∑
i=0

[
n
a

]
p,q

[
a
i

]
p,q[

i+ l
l

]
p,q

Sp,q(i+ l, l)B
⟨l⟩
i,p,q(x)T̃

(k)
n−a,p,q.

□

Now, we introduce fully modified (p, q)-poly-tangent of the first type with two
variables by using two generating functions in (1.1).

Definition 3.3. For n ∈ Z+, k ∈ Z and 0 < q < p ≤ 1, the fully modified

(p, q)-poly-tangent polynomials T̃
(k)
n,p,q(x, y) of the first type with two variables

by

∞∑
n=0

T̃ (k)
n,p,q(x, y)

tn

n!
=

[2]p,qLik,p,q(1− ep,q(−t))

t(ep,q(2t) + 1)
ep,q(xt)Ep,q(yt). (3.2)

In next result, we show the relation between fully modified (p, q)-poly-tangent
polynomials of the first kind and (3.2). Also in theorem 3.5, it is continued the
recurrence formula from two polynomials.

Theorem 3.4. For n ∈ Z+, k ∈ Z, we get the addition theorem.

T̃ (k)
n,p,q(x, y) =

n∑
l=0

[
n
l

]
p,q

T̃
(k)
l,p,q(x)q

(n−l
2 )yn−l.
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Proof. Let k ∈ Z and n be a nonnegative integer. Then we get

∞∑
n=0

T̃ (k)
n,p,q(x, y)

tn

n!
=

[2]p,qLik,p,q(1− ep,q(−t))

t(ep,q(2t) + 1)
ep,q(xt)Ep,q(yt)

=

∞∑
n=0

(
n∑

l=0

[
n
l

]
p,q

T̃
(k)
l,p,q(x)q

(n−l
2 )yn−l

)
tn

[n]p,q!
.

Thus, we have

T̃ (k)
n,p,q(x, y) =

n∑
l=0

[
n
l

]
p,q

T̃
(k)
l,p,q(x)q

(n−l
2 )yn−l.

□

Theorem 3.5. Let n ∈ N, k ∈ Z and 0 < q < p ≤ 1. We get

T̃ (k)
n,p,q(x, y)− T̃ (k)

n,p,q(x) =

n−1∑
l=0

[
n
l

]
p,q

q(
n−l
2 ) T̃

(k)
l,p,q(x) y

n−1. (3.3)

Proof. For n ∈ N, k ∈ Z, 0 < q < p ≤ 1, we have

∞∑
n=0

T̃ (k)
n,p,q(x, y)

tn

[n]p,q!
−

∞∑
n=0

T̃ (k)
n,p,q(x)

tn

[n]p,q!

=
[2]p,qLik,p,q(1− ep,q(−t))

t(ep,q(2t) + 1)
ep,q(xt)(Ep,q(yt)− 1)

=

∞∑
n=1

n−1∑
l=0

[
n
l

]
p,q

q(
n−l
2 ) T̃

(k)
l,p,q(x)y

n−1 tn

[n]p,q!
.

Comparing the coefficients of tn

[n]p,q
, the proof is complete. □

Substitute y = 1, we get

T̃ (k)
n,p,q(x, 1)− T̃ (k)

n,p,q(x) =

n−1∑
l=0

[
n
l

]
p,q

q(
n−l
2 ) T̃

(k)
l,p,q(x).

Also, the above result is appeared with (p, q)-Stirling numbers and (p, q)-
tangent polynomials as below.

Theorem 3.6. Let n ∈ N, k ∈ Z and 0 < q < p ≤ 1. We have

T̃ (k)
n,p,q(x, y)− T̃ (k)

n,p,q(x) =

n−1∑
r=0

r∑
a=0

a+1∑
l=0

[
n

r + 1

]
p,q

[
r + 1
a

]
p,q

[l]p,q!

[a+ 1]p,q[l]kp,q

× (−1)l+a+1q(
a+1
2 )yr−a+1S2,p,q(a+ 1, l)Tn−r−1,p,q(x).
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Proof. Let n ∈ N, k ∈ Z, 0 < q < p ≤ 1. Using the definition of the (p, q)-poly-
Bernoulli polynomials, we have

∞∑
n=0

T̃ (k)
n,p,q(x, y)

tn

n!
−

∞∑
n=0

T̃ (k)
n,p,q(x)

tn

n!

=
[2]p,qLik,p,q(1− e−t)

t(ep,q(2t) + 1)
ep,q(xt) (Ep,q(yt)− 1)

=

∞∑
n=0

n+1∑
l=1

(−1)n+l+1[l]p,q!

[n+ 1]p,q[l]kp,q
S2,p,q(n+ 1, l)

tn

[n]p,q!

×
∞∑

n=0

Tn,p,q(x)
tn

[n]p,q!

∞∑
n=0

q(
n+1
2 )yn+1 tn+1

[n+ 1]p,q!

=

∞∑
n=1

n−1∑
r=0

r∑
a=0

a+1∑
l=0

[
n

r + 1

]
p,q

[
r + 1
a

]
p,q

[l]p,q!

[a+ 1]p,q[l]kp,q

× (−1)l+a+1q(
a+1
2 )yr−a+1S2,p,q(a+ 1, l)Tn−r−1,p,q(x)

tn

[n]p,q!
.

Hence, the recurrence formula is indicated by

T̃ (k)
n,p,q(x, y)− T̃ (k)

n,p,q(x)

=

n−1∑
r=0

r∑
a=0

a+1∑
l=0

[
n

r + 1

]
p,q

[
r + 1
a

]
p,q

[l]p,q!

[a+ 1]p,q[l]kp,q

× (−1)l+a+1q(
a+1
2 )yr−a+1S2,p,q(a+ 1, l)Tn−r−1,p,q(x).

□

In the case y = 1, we have

T̃ (k)
n,p,q(x, 1)− T̃ (k)

n,p,q(x) =

n−1∑
r=0

r∑
a=0

a+1∑
l=0

[
n

r + 1

]
p,q

[
r + 1
a

]
p,q

[l]p,q!

[a+ 1]p,q[l]kp,q

× (−1)l+a+1q(
a+1
2 )S2,p,q(a+ 1, l)Tn−r−1,p,q(x).
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