• Title/Summary/Keyword: pump-probe analysis

Search Result 18, Processing Time 0.02 seconds

Unidirectional Photo-induced Charge Separation and Thermal Charge Recombination of Cofacially Aligned Donor-Acceptor System Probed by Ultrafast Visible-Pump/Mid-IR-Probe Spectroscopy

  • Kim, Hyeong-Mook;Park, Jaeheung;Noh, Hee Chang;Lim, Manho;Chung, Young Keun;Kang, Youn K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.587-596
    • /
    • 2014
  • A new ${\pi}$-stacked donor-acceptor (D-A) system, [Ru(1-([2,2'-bipyridine]-6-yl-methyl)-3-(2-cyclohexa-2',5'-diene-1,4-dionyl)-1H-imidazole)(2,2':6',2"-terpyridine)]$[PF_6]_2$ (ImQ_T), has been synthesized and characterized. Similar to its precedent, [Ru(6-(2-cyclohexa-2',5'-diene-1,4-dione)-2,2':6',2"-terpyridine)(2,2':6',2"-terpyridine)]$[PF_6]_2$ (TQ_T), this system has a cofacial alignment of terpyridine (tpy) ligand and quinonyl (Q) group, which facilitates an electron transfer through ${\pi}$-stacked manifold. Despite the presence of lowest-energy charge transfer transition from the Ru-based-HOMO-to-Q-based-LUMO (MQCT) predicted by theoretical calculations by using time-dependent density functional theory (TD-DFT), the experimental steady-state absorption spectrum does not exhibit such a band. The selective excitation to the Ru-based occupied orbitals-to-tpy-based virtual orbital MLCT state was thus possible, from which charge separation (CS) reaction occurred. The photo-induced CS and thermal charge recombination (CR) reactions were probed by using ultrafast visible-pump/mid-IR-probe (TrIR) spectroscopic method. Analysis of decay kinetics of Q and $Q^-$ state CO stretching modes as well as aromatic C=C stretching mode of tpy ligand gave time constants of <1 ps for CS, 1-3 ps for CR, and 10-20 ps for vibrational cooling processes. The electron transfer pathway was revealed to be Ru-tpy-Q rather than Ru-bpy-imidazol-Q.

Measurement of Thermal Diffusivity Using Deformation Angle Based on the Photothermal Displacement Method (광열변위법의 변형각을 이용한 열확산계수 측정)

  • Jeon, Pil-Su;Lee, Gwang-Jae;Yu, Jae-Seok;Park, Yeong-Mu;Lee, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.302-309
    • /
    • 2002
  • A new method of measuring the thermal diffusivity of solid material at room temperature using photothermal displacement is proposed. The influence of the parameters, such as radius and modulation frequency of the pump beam and the sample thickness, was studied. In previous works, thermal diffusivity was determined by the deformation angle and phase angle as the relative position between the heating and probe beams. In this study, however, we proposed the new analysis method based on the real part of deformation angle as the relative position between two beams. From the zero-crossing position of real part of deformation angle with respect to the pump beam, the thermal diffusivity of the materials can be obtained. The experimental values for different samples obtained by applying the new method are in good agreement with the literature values.

Femtosecond Coherent Spectroscopic Study of Zn(II)porphyrin Using Chirped Ultrashort Pulses

  • Yoon, Min-Chul;Song, Jae-Kyu;Cho, Sung;Kim, Dong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1075-1080
    • /
    • 2003
  • We have investigated femtosecond coherent vibrational motions of Zn(II)-5,15-diphenylporphyrin in toluene using chirp-controlled ultrashort pulses. The oscillatory features superimposed on the temporal profiles of the pump-probe transient absorption signal are affected by the chirping and energy of excitation pulses. Using chirp- and excitation energy-controlled femtosecond pulses, we are able to obtain information on the structural changes between the electronic ground and excited states based on a comparative analysis of the Fouriertransformed frequency-domain spectra retrieved from the oscillatory components with the ground state resonance Raman spectra and normal mode calculations.

Measurement of Thermal Diffusivity Using Deformation Gradient and Phase in the Photothermal Displacement Technique

  • Pilsoo Jeon;Lee, Kwangjai;Jaisuk Yoo;Park, Youngmoo;Lee, Jonghwa
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2078-2086
    • /
    • 2003
  • As technology advances with development of new materials, it is important to measure the thermal diffusivity of material and to predict the heat transfer in the solid subject to thermal processes. The measurement of thermal properties can be done in a non-contact way using photothermal displacement spectroscopy. In this work, the thermal diffusivity was measured by analyzing the magnitude and phase of deformation gradient. We proposed a new data analysis method based on the real part of deformation gradient as the pump-probe offset value. As the result, compared with the literature value, the measured thermal diffusivities of materials showed about 3 % error.

Influence of Nanoporous Oxide Substrate on the Performance of Photoelectrode in Semiconductor-Sensitized Solar Cells

  • Bang, Jin Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4063-4068
    • /
    • 2012
  • Oxide substrates in semiconductor-sensitized solar cells (SSSCs) have a great impact on their performance. $TiO_2$ has long been utilized as an oxide substrate, and other alternatives such as ZnO and $SnO_2$ have also been explored due to their superior physical properties over $TiO_2$. In the development of high-performance SSSCs, it is of significant importance to understand the effect of oxides on the electron injection and charge recombination as these two are major factors in dictating solar cell performance. In addition, elucidating the relationship between these two critical processes and solar cell performance in each oxide is critical in building up the basic foundation of SSSCs. In this study, ultrafast pump-probe laser spectroscopy and open-circuit decay analysis were conducted to examine the characteristics of three representative oxides ($TiO_2$, ZnO, and $SnO_2$) in terms of electron injection kinetics and charge recombination, and the implication of results is discussed.

Experimental Behavior Analysis of Double Isolated Anti-Vibration System (2중방진 시스템의 실험적 거동해석)

  • 이홍기;이신언
    • Journal of KSNVE
    • /
    • v.2 no.4
    • /
    • pp.281-292
    • /
    • 1992
  • Two types of vibration problems are encountered in industrial field: active isolation and passive isolation. In a passive type of vibration isolation, a foundation of a delicated machinery such as TEM, SEM, inspection- probe test, photolithograph, etc. is designed to have a vibration amplitude lower than an acceptable limit. In an active type, the isolation is focused on the vibration reduction caused by the machine itself(pump, motor, press, compressor, etc.). The foundation for such a machine should be so designed as to reduce the transmitted vibration below the permissible level prescribed. At any case, a transmissibility and stability must to be considered. Since an active isolation type is aimed for a vibration source, it is useful to isolate the transmitted vibrations energy from a major vibration source at the specific location. In this paper, a designed methodology of double anti-vibration system has been examined in order to have low transmissibility and reliable stability. Also experiment of scale model behavior has been conducted. Finally, the experiment output of the transfer function is compared to the analytical data.

  • PDF

Audiometric Calibration of Aural Acoustic Immittance Instrument: A Review of Acoustic Immittance Instrument's Calibration

  • Kim, Jin-Dong
    • Biomedical Science Letters
    • /
    • v.22 no.4
    • /
    • pp.115-126
    • /
    • 2016
  • Audiometric calibration is a prerequisite for securing the reliability of audiometric test results by checking the internal consistency of the relevant instrument. The purpose of this review is to help instrument operators understand the calibration procedure of aural acoustic immittance instrument which is frequently used for objective assessment. By referring to the latest international standards and the national standards relevant to the aural acoustic immittance instrument, the following parameters will be reviewed: 1) introduction of performance characteristics, 2) detailed procedure of the calibration method. According to the newest international and national standards [IEC 60645-5 (2004), ANSI S3.39-1987 (R2012)], the aural acoustic immittance instrument basically includes six components: 1) calibration cavity, 2) acoustic immittance analysis system, 3) probe assembly/unit and signal, 4) pneumatic air-pressure pump system, 5) acoustic reflex activator system and 6) tympanogram and acoustic reflex plotting system, each of these components should meet set standards. The result of behavioral hearing tests is influenced by various complex factors including the examinee's cooperation, background noise of the examination room, measurement method, skill level of the audiologist and calibration status, but the objective hearing tests is more influenced by the calibration status of the instrument than any other factors. The audiologist should take full responsibility for the reliability of the hearing test result, so he/she should carry out the calibration check and adjustments of aural acoustic immittance instrument periodically and maintain the instrument continuously by referring to the newest standards and the manufacturer's instruction manual.

Analysis of Surface Reflection All-Optical Switches using InGaAs/InAlAs Multiple Quantum Wells (InGaAs/InAlAs 다중 양자우물을 이용한 표면 반사형 전광 스위치의 해석)

  • Choi, Yong-Ho;Kim, Kyung-Whan;Choi, Woo-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.9
    • /
    • pp.23-30
    • /
    • 2000
  • The performance of two types of surface reflecting all-optical switches with InGaAs/InAlAs multiple quantum wells are investigated. The absorption spectra and the refractive index changes of the quantum well are calculated for various pump and probe beam intensities and device conditions. From theses results, on ON/OFF ratio and switching speed of the two switches are compared. It is shown that the switch using DBR has higher ON/OFF ratio and higher switching speed than the switch without DBR.

  • PDF