DOI QR코드

DOI QR Code

Femtosecond Coherent Spectroscopic Study of Zn(II)porphyrin Using Chirped Ultrashort Pulses

  • Yoon, Min-Chul (National Creative Research Initiatives Center for Ultrafast Optical Characteristics Control andDepartment of Chemistry, Yonsei University) ;
  • Song, Jae-Kyu (National Creative Research Initiatives Center for Ultrafast Optical Characteristics Control andDepartment of Chemistry, Yonsei University) ;
  • Cho, Sung (National Creative Research Initiatives Center for Ultrafast Optical Characteristics Control andDepartment of Chemistry, Yonsei University) ;
  • Kim, Dong-Ho (National Creative Research Initiatives Center for Ultrafast Optical Characteristics Control andDepartment of Chemistry, Yonsei University)
  • Published : 2003.08.20

Abstract

We have investigated femtosecond coherent vibrational motions of Zn(II)-5,15-diphenylporphyrin in toluene using chirp-controlled ultrashort pulses. The oscillatory features superimposed on the temporal profiles of the pump-probe transient absorption signal are affected by the chirping and energy of excitation pulses. Using chirp- and excitation energy-controlled femtosecond pulses, we are able to obtain information on the structural changes between the electronic ground and excited states based on a comparative analysis of the Fouriertransformed frequency-domain spectra retrieved from the oscillatory components with the ground state resonance Raman spectra and normal mode calculations.

Keywords

References

  1. Schere, N. F.; Carlson, R. J.; Matro, A.; Du, M.; Ruggerio, A. J.;Romero-Rochin, V.; Cina, J. A.; Fleming, G. R.; Rice, S. A. J.Chem. Phys. 1991, 95, 1487. https://doi.org/10.1063/1.461064
  2. Bardeen, C. J.; Che, J.; Wilson, K. R.; Yakovlev, V. V.; Apkarian,V. A.; Martens, C. C.; Zadoyan, R.; Kohler, B.; Messina, M. J.Chem. Phys. 1997, 106, 8486. https://doi.org/10.1063/1.473906
  3. Bardeen, C. J.; Wang, Q.; Shank, C. J. Phys. Rev. Lett. 1995, 75,3410. https://doi.org/10.1103/PhysRevLett.75.3410
  4. Bardeen, C. J.; Wang, Q.; Shank, C. J. J. Phys. Chem. A 1998,102, 2759. https://doi.org/10.1021/jp980346k
  5. Rosca, F.; Kumar, A. T. N.; Ye, X.; Sjodin, T.; Demidov, A. A.;Champion, P. M. J. Phys. Chem. A 2000, 104, 4280. https://doi.org/10.1021/jp993617f
  6. Ye, X.; Demidov, A.; Champion, P. M. J. Am. Chem. Soc. 2002, 124, 5914. https://doi.org/10.1021/ja017359n
  7. Misawa, K.; Kobayashi, T. J. Chem. Phys. 2000, 113, 7546. https://doi.org/10.1063/1.1313542
  8. Saito, T.; Kobayashi, T. J. Phys. Chem. A 2002, 106, 9436. https://doi.org/10.1021/jp0261408
  9. Pollard, W. T.; Dexheimer, S. L.; Wang, Q.; Peteanu, L. A.; Shank,C. V.; Mathies, R. A. J. Phys. Chem. 1992, 96, 6147. https://doi.org/10.1021/j100194a013
  10. Yoon, M.-C.; Jeong, D. H.; Cho, S.; Kim, D.; Rhee, H.; Joo, T. J.Chem. Phys. 2003, 118, 164. https://doi.org/10.1063/1.1524175
  11. Averbukh, I.; Shapiro, M. Phys. Rev. A 1993, 47, 5086. https://doi.org/10.1103/PhysRevA.47.5086
  12. Krause, J. L.; Whitnell, R. M.; Wilson, K. R.; Yan, Y. J.;Mukamel, S. J. Chem. Phys. 1993, 99, 6562. https://doi.org/10.1063/1.465848
  13. Lin, V. S.-Y.; DiMagno, S. G.; Therien, M. J. Science 1994, 264,1105. https://doi.org/10.1126/science.8178169
  14. Martin, R. E.; Diederich, F. Angew. Chem. Int. Ed. Engl. 1999, 38,1350. https://doi.org/10.1002/(SICI)1521-3773(19990517)38:10<1350::AID-ANIE1350>3.0.CO;2-6
  15. Wasielewski, M. R. Chem. Rev. 1992, 92, 435. https://doi.org/10.1021/cr00011a005
  16. Kim, Y. H.; Jeong, D. H.; Kim, D.; Jeoung, S. C.; Cho, H. S.;Kim, S. K.; Aratani, N.; Osuka, A. J. Am. Chem. Soc. 2001, 123,76. https://doi.org/10.1021/ja0009976
  17. Aratani, N.; Osuka, A.; Cho, H. S.; Kim, D. J. Photochem.Photobiol. C 2002, 3, 25. https://doi.org/10.1016/S1389-5567(02)00003-5
  18. Min, C.-K.; Joo, T.; Yoon, M.-C.; Kim, C. M.; Hwang, Y. N.; Kim,D.; Aratani, N.; Yoshida, N.; Osuka, A. J. Chem. Phys. 2001, 114,6750. https://doi.org/10.1063/1.1357438
  19. Aratani, N.; Osuka, A.; Kim, Y. H.; Jeong, D. H.; Kim, D. Angew.Chem. Int. Ed. Engl. 2000, 39, 1458. https://doi.org/10.1002/(SICI)1521-3773(20000417)39:8<1458::AID-ANIE1458>3.0.CO;2-E
  20. Cho, H. S.; Song, N. W.; Kim, Y. H.; Jeoung, S. C.; Hahn, S.;Kim, D.; Kim, S. K.; Yoshida, N.; Osuka, A. J. Phys. Chem. A2000, 104, 3287. https://doi.org/10.1021/jp9942623
  21. Wagner, R. W.; Lindsey, J. S. J. Am. Chem. Soc. 1994, 116, 9759. https://doi.org/10.1021/ja00100a055
  22. Gouterman, M. In The Porphyrins; Dolphin, D., Ed.; AcademicPress: New York, 1978; Vol. I.
  23. Kobayashi, H.; Kaizu, Y. In Porphyrins: Excited States andDynamics; Gouterman, M.; Rentzepis, P.; Straub, K. D.; ACSSymposium Series 321; American Chemical Socienty: WashingtonDC, 1986; p 105.
  24. Szintay, G.; Horvth, A. Inorg. Chim. Acta 2000, 310, 175. https://doi.org/10.1016/S0020-1693(00)00280-2
  25. Mataga, N.; Shibata, Y.; Chosrowjan, H.; Yshida, N.; Osuka, A. J.Phys. Chem. B 2000, 104, 4001. https://doi.org/10.1021/jp9941256
  26. Barkhuijsen, H.; de Beer, R.; Bovee, W. M. M. J.; van Ormondt,D. J. Magn. Reson. 1985, 61, 465.
  27. Albrecht, A. C. J. Chem. Phys. 1961, 34, 1476. https://doi.org/10.1063/1.1701032
  28. Li, X.-Y.; Czernuszewicz, R. S.; Kincaid, J. R.; Su, Y. O.; Spiro, T.G. J. Phys. Chem. 1990, 94, 31. https://doi.org/10.1021/j100364a007
  29. Jeong, D. H.; Yoon, M.-C.; Jang, S. M.; Kim, D.; Cho, D. W.;Yoshida, N.; Aratani, N.; Osuka, A. J. Phys. Chem. A 2002, 106,2359. https://doi.org/10.1021/jp0132331

Cited by

  1. -Pyridyl Porphyrins upon Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy vol.120, pp.35, 2016, https://doi.org/10.1021/acs.jpcb.6b05767
  2. Vibrational coherences in charge-transfer dyes: A non-adiabatic picture vol.141, pp.16, 2014, https://doi.org/10.1063/1.4898710
  3. Chirp effects on impulsive vibrational spectroscopy: a multimode perspective vol.12, pp.9, 2010, https://doi.org/10.1039/b920356g
  4. Development of Femtosecond Stimulated Raman Spectroscopy: Stimulated Raman Gain via Elimination of Cross Phase Modulation vol.25, pp.12, 2003, https://doi.org/10.5012/bkcs.2004.25.12.1829
  5. Excitation Energy Migration in Multiporphyrin Arrays vol.26, pp.1, 2005, https://doi.org/10.5012/bkcs.2005.26.1.019
  6. Substrate-Dependent Surface-Induced Photoreaction of Organic Monolayers on Silver vol.26, pp.9, 2003, https://doi.org/10.5012/bkcs.2005.26.9.1427
  7. Excitation Energy Migration in A Dodecameric Porphyrin Wheel vol.109, pp.18, 2003, https://doi.org/10.1021/jp044274a
  8. Femtosecond fluorescence dynamics of zinc biphenylporphine in nanocrystalline TiO2 films: Evidence for interfacial electron transfer through space vol.432, pp.4, 2003, https://doi.org/10.1016/j.cplett.2006.10.120
  9. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  10. Intrinsic lifetimes of the Soret bands of the free-base tetraphenylporphine (H2TPP) and Cu(II)TPP in the condensed phase vol.46, pp.30, 2003, https://doi.org/10.1039/c0cc01115k