Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.2.587

Unidirectional Photo-induced Charge Separation and Thermal Charge Recombination of Cofacially Aligned Donor-Acceptor System Probed by Ultrafast Visible-Pump/Mid-IR-Probe Spectroscopy  

Kim, Hyeong-Mook (Intelligent Textile System Research Center, Department of Chemistry, College of Natural Sciences, Seoul National University)
Park, Jaeheung (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University)
Noh, Hee Chang (Department of Chemistry, Sangmyung University)
Lim, Manho (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University)
Chung, Young Keun (Intelligent Textile System Research Center, Department of Chemistry, College of Natural Sciences, Seoul National University)
Kang, Youn K. (Department of Chemistry, Sangmyung University)
Publication Information
Abstract
A new ${\pi}$-stacked donor-acceptor (D-A) system, [Ru(1-([2,2'-bipyridine]-6-yl-methyl)-3-(2-cyclohexa-2',5'-diene-1,4-dionyl)-1H-imidazole)(2,2':6',2"-terpyridine)]$[PF_6]_2$ (ImQ_T), has been synthesized and characterized. Similar to its precedent, [Ru(6-(2-cyclohexa-2',5'-diene-1,4-dione)-2,2':6',2"-terpyridine)(2,2':6',2"-terpyridine)]$[PF_6]_2$ (TQ_T), this system has a cofacial alignment of terpyridine (tpy) ligand and quinonyl (Q) group, which facilitates an electron transfer through ${\pi}$-stacked manifold. Despite the presence of lowest-energy charge transfer transition from the Ru-based-HOMO-to-Q-based-LUMO (MQCT) predicted by theoretical calculations by using time-dependent density functional theory (TD-DFT), the experimental steady-state absorption spectrum does not exhibit such a band. The selective excitation to the Ru-based occupied orbitals-to-tpy-based virtual orbital MLCT state was thus possible, from which charge separation (CS) reaction occurred. The photo-induced CS and thermal charge recombination (CR) reactions were probed by using ultrafast visible-pump/mid-IR-probe (TrIR) spectroscopic method. Analysis of decay kinetics of Q and $Q^-$ state CO stretching modes as well as aromatic C=C stretching mode of tpy ligand gave time constants of <1 ps for CS, 1-3 ps for CR, and 10-20 ps for vibrational cooling processes. The electron transfer pathway was revealed to be Ru-tpy-Q rather than Ru-bpy-imidazol-Q.
Keywords
Ru; NHC; Electron transfer; Charge separation; Time-resolved IR spectroscopy;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Alstrum-Acevedo, J. H.; Brennaman, M. K.; Meyer, T. J. Inorg. Chem. 2005, 44, 6802.   DOI   ScienceOn
2 Wasielewski, M. R. J. Org. Chem. 2006, 71, 5051.   DOI   ScienceOn
3 Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2009, 42, 1890.   DOI   ScienceOn
4 El-Khouly, M. E.; Ju, D. K.; Kay, K. Y.; D'Souza, F.; Fukuzumi, S. Chem.-Eur. J. 2010, 16, 6193.   DOI   ScienceOn
5 Fukuzumi, S.; Ohkubo, K.; Saito, K.; Kashiwagi, Y.; Khoury, T.; Crossley, M. J. J. Porphyr. Phthalocya. 2011, 15, 1292.   DOI   ScienceOn
6 Bottari, G.; Trukhina, O.; Ince, M.; Torres, T. Coord. Chem. Rev. 2012, 256, 2453.   DOI   ScienceOn
7 Concepcion, J. J.; House, R. L.; Papanikolas, J. M.; Meyer, T. J. Proc. Natl. Acad. Sci. 2012, 109, 15560.   DOI
8 Happ, B.; Winter, A.; Hager, M. D.; Schubert, U. S. Chem. Soc. Rev. 2012, 41, 2222.   DOI   ScienceOn
9 Frischmann, P. D.; Mahata, K.; Wurthner, F. Chem. Soc. Rev. 2013, 42, 1847.   DOI   ScienceOn
10 Deisenhofer, J., Norris, J. R., Eds.; The Photosynthetic Reaction Center; Academic: 1993; Vol. II, San Diego.
11 Blankenship, R. E., Madigan, M. T., Bauer, C. E., Eds.; Anoxygenic Photosynthetic Bacteria; Kluwer Academic Publishers: 1995; Dordrect, The Netherlands.
12 Michel-Beyerle, M. E., Ed., The Reaction Center of Photosynthetic Bacteria; 1996; Springer: Berlin-Heidelberg.
13 Kirmaier, C.; Holten, D. Photosynth. Res. 1987, 13, 225.   DOI   ScienceOn
14 Breton, J.; Martin, J. L.; Fleming, G. R.; Lambry, J. C. Biochemistry 1988, 27, 8276.   DOI
15 Holzapfel, W.; Finkele, U.; Kaiser, W.; Oesterhelt, D.; Scheer, H.; Stilz, H. U.; Zinth, W. Chem. Phys. Lett. 1989, 160, 1.   DOI   ScienceOn
16 Kirmaier, C.; Gaul, D.; DeBey, R.; Holten, D.; Schenck, C. C. Science 1991, 251, 922.   DOI
17 Heller, B. A.; Holten, D.; Kirmaier, C. Science 1995, 269, 940.   DOI   ScienceOn
18 Gray, H. B.; Winkler, J. R. 1996; Vol. 65, p 537.
19 Kirmaier, C.; Weems, D.; Holten, D. Biochemistry 1999, 38, 11516.   DOI   ScienceOn
20 Kim, H. M.; Park, J.; Lee, Y. T.; Lim, M.; Chung, Y. K.; Kang, Y. K. J. Phys. Chem. C 2011, 115, 22557.   DOI   ScienceOn
21 Kim, H. M.; Jeong, D.; Noh, H. C.; Kang, Y. K.; Chung, Y. K. Bull. Korean Chem. Soc. 2014, 35, 448.   DOI   ScienceOn
22 Savage, S. A.; Smith, A. P.; Fraser, C. L. J. Org. Chem. 1998, 63, 10048.   DOI   ScienceOn
23 Frisch, M. J. e. a. Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
24 Kim, J.; Park, J.; Lee, T.; Lim, M. J. Phys. Chem. B 2009, 113, 260.   DOI   ScienceOn
25 Lee, T.; Park, J.; Kim, J.; Joo, S.; Lim, M. Bull. Korean Chem. Soc. 2009, 30, 177.   DOI   ScienceOn
26 Kim, S.; Jin, G.; Lim, M. J. Phys. Chem. B 2004, 108, 20366.   DOI   ScienceOn
27 Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.   DOI
28 Becke, A. D. J. Chem. Phys. 1993, 98, 5648.   DOI   ScienceOn
29 Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.   DOI   ScienceOn
30 Hertwig, R. H.; Koch, W. Chem. Phys. Lett. 1997, 268, 345.   DOI   ScienceOn
31 Pietro, W. J.; Francl, M. M.; Hehre, W. J.; DeFrees, D. J.; Pople, J. A. J. Am. Chem. Soc. 1982, 104, 5039.   DOI
32 Lee, C. T.; Yang, W. T.; Parr, R. G. Physical Review B 1988, 37, 785.   DOI   ScienceOn
33 Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.   DOI
34 Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.   DOI
35 Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.   DOI
36 Bartolotti, L. J. Physical Review A 1982, 26, 2243.   DOI
37 Iovine, P. M.; Veglia, G.; Furst, G.; Therien, M. J. J. Am. Chem. Soc. 2001, 123, 5668.   DOI   ScienceOn
38 Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 52, 997.   DOI
39 Dinda, J.; Liatard, S.; Chauvin, J.; Jouvenot, D.; Loiseau, F. Dalton Trans. 2011, 40, 3683.   DOI   ScienceOn
40 Iovine, P. M.; Kellett, M. A.; Redmore, N. P.; Therien, M. J. J. Am. Chem. Soc. 2000, 122, 8717.   DOI   ScienceOn
41 Rubtsov, I. V.; Kang, Y. K.; Redmore, N. P.; Allen, R. M.; Zheng, J. R.; Beratan, D. N.; Therien, M. J. J. Am. Chem. Soc. 2004, 126, 5022.   DOI   ScienceOn
42 Taylor, A. J.; Davies, E. S.; Weinstein, J. A.; Sazanovich, I. V.; Bouganov, O. V.; Tikhomirov, S. A.; Towrie, M.; McMaster, J.; Garner, C. D. Inorg. Chem. 2012, 51, 13181.   DOI   ScienceOn
43 Son, S. U.; Park, K. H.; Lee, Y. S.; Kim, B. Y.; Choi, C. H.; Lah, M. S.; Jang, Y. H.; Jang, D. J.; Chung, Y. K. Inorg. Chem. 2004, 43, 6896.   DOI   ScienceOn
44 Feng, L.; Rudolf, M.; Wolfrum, S.; Troeger, A.; Slanina, Z.; Akasaka, T.; Nagase, S.; Martin, N.; Ameri, T.; Brabec, C. J.; Guldi, D. M. J. Am. Chem. Soc. 2012, 134, 12190.   DOI
45 Sullivan, B. P.; Calvert, J. M.; Meyer, T. J. Inorg. Chem. 1980, 19, 1404.   DOI