Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.12.4063

Influence of Nanoporous Oxide Substrate on the Performance of Photoelectrode in Semiconductor-Sensitized Solar Cells  

Bang, Jin Ho (Department of Chemistry and Applied Chemistry, Hanyang University)
Publication Information
Abstract
Oxide substrates in semiconductor-sensitized solar cells (SSSCs) have a great impact on their performance. $TiO_2$ has long been utilized as an oxide substrate, and other alternatives such as ZnO and $SnO_2$ have also been explored due to their superior physical properties over $TiO_2$. In the development of high-performance SSSCs, it is of significant importance to understand the effect of oxides on the electron injection and charge recombination as these two are major factors in dictating solar cell performance. In addition, elucidating the relationship between these two critical processes and solar cell performance in each oxide is critical in building up the basic foundation of SSSCs. In this study, ultrafast pump-probe laser spectroscopy and open-circuit decay analysis were conducted to examine the characteristics of three representative oxides ($TiO_2$, ZnO, and $SnO_2$) in terms of electron injection kinetics and charge recombination, and the implication of results is discussed.
Keywords
Semiconductor-sensitized solar cells; Photoelectrode; Oxide substrates; Electron injection; Charge recombination;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hodes, G. J. Phys. Chem. C 2008, 112, 17778.   DOI   ScienceOn
2 Kamat, P. V.; Tvrdy, K.; Baker, D. R.; Radich, J. G. Chem. Rev. 2010, 110, 6664.   DOI   ScienceOn
3 Hod, I.; Gonzalez-Pedro, V.; Tachan, Z.; Fabregat-Santiago, F.; Mora-Sero, I.; Bisquert, J.; Zaban, A. J. Phys. Chem. Lett. 2011, 2, 3032.   DOI
4 Yang, Z.; Chen, C.-Y.; Roy, P.; Chang, H.-T. Chem. Commun. 2011, 47, 9561.   DOI   ScienceOn
5 Vogel, R.; Hoyer, P.; Weller, H. J. Phys. Chem. 1994, 98, 3183.   DOI   ScienceOn
6 Kamat, P. V. J. Phys. Chem. C 2008, 112, 18737.   DOI
7 Bang, J. H.; Kamat, P. V. ACS Nano 2009, 3, 1467.   DOI   ScienceOn
8 Ji, I. A.; Park, M.-J.; Jung, J.-Y.; Choi, M. J.; Lee, Y.-W.; Lee, J.- H.; Bang, J. H. Bull. Korean Chem. Soc. 2012, 33, 2200.   DOI   ScienceOn
9 Peter, L. Acc. Chem. Res. 2009, 42, 1839.   DOI   ScienceOn
10 Mora-Seroì, I.; Bisquert, J. Nano Lett. 2003, 3, 945.   DOI   ScienceOn
11 Tiwana, P.; Docampo, P.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. ACS Nano 2011, 5, 5158.   DOI   ScienceOn
12 Snaith, H. J.; Ducati, C. Nano Lett. 2010, 10, 1259.   DOI   ScienceOn
13 Leschkies, K. S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J. E.; Carter, C. B.; Kortshagen, U. R.; Norris, D. J.; Aydil, E. S. Nano Lett. 2007, 7, 1793.   DOI   ScienceOn
14 Hossain, M. A.; Jennings, J. R.; Koh, Z. Y.; Wang, Q. ACS Nano 2011, 5, 3172.   DOI   ScienceOn
15 Mora-Seroì, I.; Bisquert, J. J. Phys. Chem. Lett. 2010, 1, 3046.   DOI   ScienceOn
16 Fessenden, R. W.; Kamat, P. V. J. Phys. Chem. 1995, 99, 12902.   DOI   ScienceOn
17 Katoh, R.; Furube, A.; Yoshihara, T.; Hara, K.; Fujihashi, G.; Takano, S.; Murata, S.; Arakawa, H.; Tachiya, M. J. Phys. Chem. B 2004, 108, 4818.   DOI   ScienceOn
18 Nonoguchi, Y.; Nakashima, T.; Kawai, T. Small 2009, 5, 2403.   DOI   ScienceOn
19 Zhang, J.; Tang, C.; Bang, J. H. Electrochem. Commun. 2010, 12, 1124.   DOI   ScienceOn
20 Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2006, 128, 2385.   DOI   ScienceOn
21 Tvrdy, K.; Frantsuzov, P. A.; Kamat, P. V. Proc. Nat. Acad. Sci. U.S.A. 2011, 108, 29.   DOI   ScienceOn
22 Dibbell, R. S.; Youker, D. G.; Watson, D. F. J. Phys. Chem. C 2009, 113, 18643.   DOI   ScienceOn
23 Asbury, J. B.; Hao, E.; Wang, Y.; Ghosh, H. N.; Lian, T. J. Phys. Chem. B 2001, 105, 4545.   DOI   ScienceOn
24 Stockwell, D.; Yang, Y.; Huang, J.; Anfuso, C.; Huang, Z.; Lian, T. J. Phys. Chem. C 2010, 114, 6560.   DOI   ScienceOn
25 Bauer, C.; Boschloo, G.; Mukhtar, E.; Hagfeldt, A. J. Phys. Chem. B 2001, 105, 5585.   DOI   ScienceOn
26 Green, A. N. M.; Palomares, E.; Haque, S. A.; Kroon, J. M.; Durrant, J. R. J. Phys. Chem. B 2005, 109, 12525.   DOI   ScienceOn
27 Quintana, M.; Edvinsson, T.; Hagfeldt, A.; Boschloo, G. J. Phys. Chem. C 2006, 111, 1035.
28 Bang, J. H.; Kamat, P. V. Adv. Funct. Mater. 2010, 20, 1970.   DOI   ScienceOn
29 Liu, D.; Kamat, P. V. J. Phys. Chem. 1993, 97, 10769.   DOI   ScienceOn
30 Martinez-Ferrero, E.; Mora-Seroì, I.; Albero, J.; Gimenez, S.; Bisquert, J.; Palomares, E. Phys. Chem. Chem. Phys. 2010, 12, 2819.   DOI   ScienceOn
31 Chakrapani, V.; Baker, D.; Kamat, P. V. J. Am. Chem. Soc. 2011, 133, 9607.   DOI   ScienceOn
32 Bang, J. H.; Kamat, P. V. ACS Nano 2011, 5, 9421.   DOI   ScienceOn
33 Guijarro, N. S.; Shen, Q.; Gimeìnez, S.; Mora-Seroì, I.; Bisquert, J.; Lana-Villarreal, T.; Toyoda, T.; Goìmez, R. J. Phys. Chem. C 2010, 114, 22352.   DOI   ScienceOn
34 Mora-Seroì, I.; Gimeìnez, S.; Fabregat-Santiago, F.; Goìmez, R.; Shen, Q.; Toyoda, T.; Bisquert, J. Acc. Chem. Res. 2009, 42, 1848.   DOI   ScienceOn
35 Zaban, A.; Greenshtein, M.; Bisquert, J. ChemPhysChem 2003, 4, 859.   DOI   ScienceOn
36 Sudhagar, P.; Song, T.; Lee, D. H.; Mora-Seroì, I.; Bisquert, J.; Laudenslager, M.; Sigmund, W. M.; Park, W. I.; Paik, U.; Kang, Y. S. J. Phys. Chem. Lett. 2011, 2, 1984.   DOI   ScienceOn