• Title/Summary/Keyword: pulse-reverse

Search Result 95, Processing Time 0.022 seconds

A Study on the Dependency of Pulsed-DC Sputtered Aluminum-doped Zinc Oxide Thin Films on the Reverse Pulse Time (Pulsed-DC 스퍼터링에서 Reverse Pulse Time에 따른 AZO 박막의 특성 변화에 관한 연구)

  • Ryu, Hyungseok;Zhao, Zhenqian;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.32-36
    • /
    • 2018
  • For various oxygen($O_2$) to argon(Ar) gas ratio, aluminum-doped zinc oxide(AZO) films were deposited for 3 min at different duty ratio by changing reverse pulse times. As the duty ratio increased, the thickness of the AZO film decreased and the sheet resistance increased. It can be concluded that When sputtering AZO Thin film, oxygen interfered with sputtering. When the reverse time was increased, the thickness of AZO was proportional to the real sputtering time and decreased. From the optical transmittance and sheet resistance, it was possible to obtain a higher figure of merits of AZO at a lower reverse pulse time. Even at the short reversed pulse time, it can be concluded that the accumulated charges on the AZO target are completely cleared. At a lower reverse pulse time, pulsed-DC sputtering of AZO is expected to be used instead of DC sputtering in the deposition of transparent conductive oxide(TCO) films without any degradation in thickness and structural/electrical characteristics.

Effects of Pulse-Reverse Current on Purity of Deposit in Electrowinning of Cobalt (코발트 전해채취 시 전착물 순도에 미치는 Pulse-Reverse Current의 영향)

  • Han, Jung Min;Lee, Jung Hoon;Kim, Yong Hwan;Jung, Uoo Chang;Chung, Won Sub
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.1014-1020
    • /
    • 2010
  • In order to improve the purity on deposit in cobalt electrowining, a fundamental study using Pulse-Reverse Current (PRC) was carried out. Based on a sulfate solution, Cu, Ni, and Fe as impurities were added during cobalt electrowinning. There were four reverse waveforms and frequency conditions from 1 Hz to 10 kHz, and the purity of each condition was compared with the Direct Current (DC) purity. From the results, it was found that the anodic potential induced by reverse current affects selective dissolution of impurities. In this work, the case of the highest reverse peak current density ($I_r$) with a short reverse time ($t_r$) at 100 Hz showed a higher purity than that of the DC. This PRC condition also showed only a 4% low current efficiency comparable to the DC. We concluded that an optimized PRC for cobalt electrowinning could improve the purity with little loss of current efficiency.

Characteristics of Plated Bump on Multi-layer Build up PCB by Pulse-reverse Electroplating (Pulse-reverse도금을 이용한 다층 PCB 빌드업 기판용 범프 생성특성)

  • Seo, Min-Hye;Kong, Man-Sik;Hong, Hyun-Seon;Sun, Jee-Wan;Kong, Ki-Oh;Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.151-155
    • /
    • 2009
  • Micro-scale copper bumps for build-up PCB were electroplated using a pulse-reverse method. The effects of the current density, pulse-reverse ratio and brightener concentration of the electroplating process were investigated and optimized for suitable performance. The electroplated micro-bumps were characterized using various analytical tools, including an optical microscope, a scanning electron microscope and an atomic force microscope. Surface analysis results showed that the electroplating uniformity was viable in a current density range of 1.4-3.0 A/$dm^2$ at a pulse-reverse ratio of 1. To investigate the brightener concentration on the electroplating properties, the current density value was fixed at 3.0 A/$dm^2$ as a dense microstructure was achieved at this current density. The brightener concentration was varied from 0.05 to 0.3 ml/L to study the effect of the concentration. The optimum concentration for micro-bump electroplating was found to be 0.05 ml/L based on the examination of the electroplating properties of the bump shape, roughness and grain size.

Microstructural Characteristics of Electro-Plated Cu Films by DC and Pulse Systems (DC, pulse 조건에 따른 구리 도금층 미세 조직 관찰)

  • Yoon, Jisook;Park, Chansu;Hong, Soonhyun;Lee, Hyunju;Lee, Seungjun;Kim, Yangdo
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.105-110
    • /
    • 2014
  • The aim of this work was to investigate the effects of electrodeposition conditions on the microstructural characteristics of copper thin films. The microstructure of electroplated Cu films was found to be highly dependent on electrodeposition conditions such as system current and current density, as well as the bath solution itself. The current density significantly changed the preferred orientation of electroplated Cu films in a DC system, while the solution itself had very significant effects on microstructural characteristics in a pulse-reverse pulse current system. In the DC system, polarization at high current above 30 mA, changed the preferred orientation of Cu films from (220) to (111). However, Cu films showed (220) preferred orientation for all ranges of current density in the pulse-reverse pulse current system. The grain size decreased with increasing current density in the DC system while it remained relatively constant in the pulse-reverse pulse current system. The sheet resistance increased with increasing current density in the DC system due to the decreased grain size.

Laser Etching Characteristics of ITO/Ag/ITO Conductive Films on Forward/Reverse Sides of Flexible Substrates (플렉서블 기판 전/후면에서의 레이저를 이용한 ITO/Ag/ITO 전극층의 식각 특성)

  • Nam, Hanyeob;Kwon, Sang Jik;Cho, Eou-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.707-711
    • /
    • 2016
  • ITO/Ag/ITO conductive films on PET (polyethylene terephthalate) was etched by a Q-switched diode-pumped neodymiun-doped yttrium vanadate (Nd:YVO4, ${\lambda}=1064nm$) laser. During the laser direct etching, the laser beam was incident on the two different directions of PET and the etching patterns were investigated and analyzed. At a lower repetition rate of laser pulse, the larger laser etched patterns were obtained by laser beam incident on reverse side of PET substrate. On the contrary, at a higher repetition rate, it was possible to find the larger etched patterns in case of the laser beam incidence on forward side of PET substrate. For the laser beam incidence on reverse side, the laser beam is expected to be transferred and scattered through the PET substrate and the laser beam energy is thought to be dependent on the etch laser pulse beam energy.

Electroplating of Copper Using Pulse-Reverse Electroplating Method for SiP Via Filling (펄스-역펄스 전착법을 이용한 SiP용 via의 구리 충진에 관한 연구)

  • Bae J. S.;Chang G H.;Lee J. H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.129-134
    • /
    • 2005
  • Electroplating copper is the important role in formation of 3D stacking interconnection in SiP (System in Package). The I-V characteristics curves are investigated at different electrolyte conditions. Inhibitor and accelerator are used simultaneously to investigate the effects of additives. Three different sizes of via are tested. All via were prepared with RIE (reactive ion etching) method. Via's diameter are 50, 75, $100{\mu}m$ and the height is $100{\mu}m$. Inside via, Ta was deposited for diffusion barrier and Cu was deposited fer seed layer using magnetron sputtering method. DC, pulse and pulse revere current are used in this study. With DC, via cannot be filled without defects. Pulse plating can improve the filling patterns however it cannot completely filled copper without defects. Via was filled completely without defects using pulse-reverse electroplating method.

  • PDF

$CH_4N_2S$$C_{10}H_{13}NO_3S$ 첨가가 Ni 패턴 상의 구리도금 형상에 미치는 영향

  • Lee, Jin-Hyeong;Lee, Ju-Yeol;Kim, Man
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.155-155
    • /
    • 2009
  • The copper plating was deposited by pulse reverse current (PRC) method with additives. The all specimens were first immersted in 10% H2SO4 for 10 minutes, and then were rinsed with deionized water. The current densities of forward pulse were 400mA/$cm^2$, and those of reverse pulse were 1900mA/$cm^2$ and 100mA/$cm^2$. Results are compared for different additives for pulse plating conditions. When it added in Only CH4N2S (TU) or only C10H13NO3S (SVH), the effect of surface side growth of Cu was not different. But when it added in TU and SVH, surface side growth of Cu decreased. Polarization curves were measured from OCP to -0.7 V at a rate of 1mV/sec. Each specimen was observed under the PHENOM to see surface morphology.

  • PDF

Pulse reverse current 을 이용한 Cu mesh 도금의 표면형상 개선

  • Lee, Jin-Hyeong;Lee, Ju-Yeol;Kim, Man
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.136-137
    • /
    • 2009
  • 전자파 차폐재로 메쉬를 제작하는 기존의 배치 방식은 복잡한 작업공정과 비싼 설비로 인해 생산원가 높다. 그래서 pulse reverse current를 이용하여 Cu mesh 도금을 하였다. 정펄스의 전류밀도가 $31mA/cm^2$일일 때 역펄스의 전류밀도 및 duty cycle에 상관없이 표면은 매끄럽게 나왔다. 정펄스의 전류밀도가 $454mA/cm^2$일때는 duty cycle이 25%이하는 표면상태가 매끄럽게 나타났지만 33%이상에서 표면상태가 거칠게 도금이 되었다.

  • PDF

A Study on the Reverse Cleaning Flow Characteristics for High Temperature and High Pressure Filtration (고온 고압 집진을 위한 역세정 유동장의 특성에 관한 연구)

  • 김장우;정진도;김은권
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 2003
  • Ceramic filter has been demonstrated as an attractive system to improve the thermal efficiency and to reduce the effluent pollutants. Removal of particulates from the hot gas stream is very important in air pollution control. In particular, the elimination of the particulate matters discharged from a gas turbine at high temperature can prevent the corrosion inside the IGCC. In this study, a Lab. scale test and numerical simulation were carried out to comprehend the relationship between pulse jet pressure and recovery of pressure drop and to characterize the reverse cleaning flow through a ceramic fil-ter element under high temperature and high pressure. When the pulse-jet pressures were 2, 3 and 4 kg/$ extrm{cm}^2$, the cleaning effect increase of about 10~30% by recovery of pressure drop caused by pulse pressure. Cleaning effect at 45$0^{\circ}C$ was greater than that at 55$0^{\circ}C$ or 650$^{\circ}$ for the same pulse pressure. According to the result of the present simulation, high pressure has been formed in terminal and central regions in our models and temperature distribution caused by pulse air is to be uniform comparatively on inner surface of filter.

The Effects of Current Types on Through Via Hole Filling for 3D-SiP Application (전류인가 방법이 3D-SiP용 Through Via Hole의 Filling에 미치는 영향)

  • Chang, Gun-Ho;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.45-50
    • /
    • 2006
  • Copper via filling is the important factor in 3-D stacking interconnection of SiP (system in package). As the packaging density is getting higher, the size of via is getting smaller. When DC electroplating is applied, a defect-free hole cannot be obtained in a small size via hole. To prevent the defects in holes, pulse and pulse reverse current was applied in copper via filling. The holes, $20\and\;50{\mu}m$ in diameter and $100{\sim}190\;{\mu}m$ in height. The holes were prepared by DRIE method. Ta was sputtered for copper diffusion barrier followed by copper seed layer IMP sputtering. Via specimen were filled by DC, pulse and pulse-reverse current electroplating methods. The effects of additives and current types on copper deposits were investigated. Vertical and horizontal cross section of via were observed by SEM to find the defects in via. When pulse-reverse electroplating method was used, defect free via were successfully obtained.

  • PDF