• 제목/요약/키워드: pulse frequency modulation

검색결과 495건 처리시간 0.022초

신호수신시스템 성능예측을 위한 신호원 모의발생 방안 연구 (Study of the RF Test signal generation methods for receiver performance verification)

  • 김동규;윤원식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.353-356
    • /
    • 2011
  • 전파를 수집하고 분석하는 신호수신시스템은 실 운용환경에서 검증되기 전에 정밀한 모의전파신호원을 이용한 정량적인 성능예측 및 실 환경과 유사한 모의전파환경에서 검증되어야한다. 신호수신 시스템은 전파의 주파수(Frequency), 펄스 변조(Pulse Modulation), 스캔 변조(Scan Modulation), 펄스 내 위상변조(Phase Modulation On Pulse), 펄스 내 주파수 변조(Frequency Modulation On Pulse) 등 다양한 신호특성에 대한 측정, 분석능력을 갖는다. 이러한 신호원들은 기본으로 실험실 환경에서 모의발생 되어야 하고 전파가 다수 존재하는 복잡한 전파환경 또한 모의되어야 한다. 본 논문에서는 효과적인 전파신호원의 모의발생, 운용시나리오에 따른 정밀고주파시험신호 모의방법에 관한 연구 결과를 서술한다.

  • PDF

공진형 인버터의 PWM 제어에 관한 연구 (A Study on The PWM Control of Resonant Inverters)

  • 신재화;조규민;김영석
    • 전자공학회논문지SC
    • /
    • 제38권1호
    • /
    • pp.53-60
    • /
    • 2001
  • 전력전자의 많은 응용분야에서 고주파 공진형 인버터가 이용되며, 이들 공진형 인버터의 출력 전력을 제어하기 위하여는 PAM(Pulse Amplitude Modulation), PFM(Pulse Frequency Modulation) 혹은 PWM(Pulse Width Modulation) 기법들이 이용된다. 그리고 이들 공진형 인버터는 변화하는 부하 상태에서도 신뢰성 있게 동작하기 위하여 출력추파수를 제어하여야 한다. 본 논문에서는 공진형 인버터의 PWM 제어의 일환으로써 새로운 스위칭 방법을 제안하였다. 제안한 방법에 의하면, 변화하는 공진 주파수하에서도 최적의 공진 주파수와 출력 기본파 역률 1을 달성할 수 있다. 제안한 PWM 스위칭 방법의 상세한 알고리즘 및 출력특성을 기술하였다. 그리고 실험 결과를 통하여 제안한 방법의 타당성을 확인하였다.

  • PDF

A 40-W Flyback Converter with Dual-Operation Modes for Improved Light Load Efficiency

  • Kang, Jin-Gyu;Park, Jeongpyo;Gong, Jung-Chul;Yoo, Changsik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권4호
    • /
    • pp.493-500
    • /
    • 2015
  • A flyback converter operates with either pulse width modulation (PWM) or pulse frequency modulation (PFM) control scheme depending on the load current. At light load condition, PFM control is employed to reduce the switching frequency and thereby minimize the switching power loss. For heavier load, PWM control is used to regulate the output voltage of the flyback converter. The flyback controller has been implemented in a $0.35{\mu}m$ BCDMOS process and applied to a 40-W flyback converter. The light-load power efficiency of the flyback converter is improved up to 5.7-% comparing with the one operating with a fixed switching frequency.

공진형 인버터의 PWM 제어에 관한 연구 (A Study on The U Control of Resonant Inverters)

  • 유완식;조규민
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(5)
    • /
    • pp.17-20
    • /
    • 2000
  • Usually, in many applications, high frequency resonant inverters are used, and the PAM(Pulse Amplitude Modulation), PFM(Pulse Frequency Modulation) or PWM(Pulse Width Modulation) techniques are used to control the output power of resonant inverters. In this paper, a new switching scheme is proposed as a PWM control method. With the proposed method, it can be obtained that unity output displacement factor under the variable resonant frequency. The detail algorithm of the proposed PWM switching scheme and its charicteristics are discussed. And the validity of the proposed method is confirmed with the experimental results.

  • PDF

Frequency-Modulated Pulse-Amplification Method for Reducing Pulse Shape Distortion

  • Jeong, Jihoon;Cho, Seryeyohan;Hwang, Seungjin;Yu, Tae Jun
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1637-1643
    • /
    • 2018
  • To reduce the laser pulse shape distortion accompanying the amplification process and achieve an intended output pulse shape in the Nd:YAG amplifier chain, we propose a frequency-modulated pulse-amplification method. Assuming carrier-frequency-modulated seed pulses, we numerically simulate the pulse amplification in an Nd:YAG amplifier chain where severe distortion occurs. For the calculation, we develop a modified Frantz-Nodvik equation, which enables two inputs with different carrier frequencies. The simulation results indicate that the temporal contrast of the seed pulse needed to obtain a flat output pulse shape is reduced by 16 - 25 dB when frequency modulation is applied.

Phase Angle Control in Resonant Inverters with Pulse Phase Modulation

  • Ye, Zhongming;Jain, Praveen;Sen, Paresh
    • Journal of Power Electronics
    • /
    • 제8권4호
    • /
    • pp.332-344
    • /
    • 2008
  • High frequency AC (HFAC) power distribution systems delivering power through a high frequency AC link with sinusoidal voltage have the advantages of simple structure and high efficiency. In a multiple module system, where multiple resonant inverters are paralleled to the high frequency AC bus through connection inductors, it is necessary for the output voltage phase angles of the inverters be controlled so that the circulating current among the inverters be minimized. However, the phase angle of the resonant inverters output voltage can not be controlled with conventional phase shift modulation or pulse width modulation. The phase angle is a function of both the phase of the gating signals and the impedance of the resonant tank. In this paper, we proposed a pulse phase modulation (PPM) concept for the resonant inverters, so that the phase angle of the output voltage can be regulated. The PPM can be used to minimize the circulating current between the resonant inverters. The mechanisms of the phase angle control and the PPM were explained. The small signal model of a PPM controlled half-bridge resonant inverter was analyzed. The concept was verified in a half bridge resonant inverter with a series-parallel resonant tank. An HFAC power distribution system with two resonant inverters connected in parallel to a 500kHz, 28V AC bus was presented to demonstrate the applicability of the concept in a high frequency power distribution system.

Electrically-evoked Neural Activities of rd1 Mice Retinal Ganglion Cells by Repetitive Pulse Stimulation

  • Ryu, Sang-Baek;Ye, Jang-Hee;Lee, Jong-Seung;Goo, Yong-Sook;Kim, Chi-Hyun;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권6호
    • /
    • pp.443-448
    • /
    • 2009
  • For successful visual perception by visual prosthesis using electrical stimulation, it is essential to develop an effective stimulation strategy based on understanding of retinal ganglion cell (RGC) responses to electrical stimulation. We studied RGC responses to repetitive electrical stimulation pulses to develop a stimulation strategy using stimulation pulse frequency modulation. Retinal patches of photoreceptor-degenerated retinas from rd1 mice were attached to a planar multi-electrode array (MEA) and RGC spike trains responding to electrical stimulation pulse trains with various pulse frequencies were observed. RGC responses were strongly dependent on inter-pulse interval when it was varied from 500 to 10 ms. Although the evoked spikes were suppressed with increasing pulse rate, the number of evoked spikes were >60% of the maximal responses when the inter-pulse intervals exceeded 100 ms. Based on this, we investigated the modulation of evoked RGC firing rates while increasing the pulse frequency from 1 to 10 pulses per second (or Hz) to deduce the optimal pulse frequency range for modulation of RGC response strength. RGC response strength monotonically and linearly increased within the stimulation frequency of 1~9 Hz. The results suggest that the evoked neural activities of RGCs in degenerated retina can be reliably controlled by pulse frequency modulation, and may be used as a stimulation strategy for visual neural prosthesis.

주파수 변조 기법을 이용한 전압 클램프 특성을 갖는 유도가열용 Class-E 인버터의 새로운 제어에 관한 연구 (A Study on the New Control Scheme of Class-I Inverter for IH-Jar Applications with Clamped Voltage Characteristics Using Pulse frequency Modulation)

  • 이동윤;최영덕;현동석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권3호
    • /
    • pp.133-139
    • /
    • 2003
  • In this paper, a new control scheme of Class-E inverter for Induction Heating (IH) Jar applications with clamped voltage characteristics using Pulse-Frequency-Modulation (PFM) is introduced. To reduce the voltage stress of switch, the proposed PFM control scheme doesn't need any auxiliary circuit in comparison to a family of Active Clamped Class-E (ACCE) inverter. It can decrease voltage stress of switch through modulation of switching frequency. The Class-E inverter using the proposed control scheme has the advantage of not only the same output power when it is compared with a Hybrid-Active Clamped Class-E (Hybrid-ACCE) inverter but also Zero-Voltage-Switching (ZVS), which are characteristics of conventional Class-E and ACCE inverter. The control principles and analysis of proposed method are explained in detail and its validity is verified through simulation and experimental results.

고주파유도가열 철부하의 FTPM 및 PSPM 제어에 관한 연구 (The Study on FTPM and PSPM of High Frequency Induction-Heating Iron Load)

  • 임영도;김두영
    • 전력전자학회논문지
    • /
    • 제5권2호
    • /
    • pp.192-199
    • /
    • 2000
  • 본 논문은 고주파 유도 가열기의 전력조절을 위해 뉴로-퍼지 알고리즘을 이용하고, IGBT를 사용한 위상 전이 펄스변조(PSPM)와 주파수 추종 펄스변조(FEPM) 가 조절되는 공진 고주파 인버터를 응용한 유도가열기를 설명한다. 이는 실제로 산업 현장에서 20KHz~500KHz 유도 가열 및 유도 용해 전원장치용으로 쓰인다. 위상 전이 펄스변조 (PSPM) 정전력 조절 기술을 바탕으로 한 적응 주파수 추종기법은 스위칭 손실을 최소화하고 전력조절을 용이하게 하기 위해 소개되어졌다. 뉴로-퍼지제어기를 사용하여 만들어진 실험장치는 성공적인 논증과 토의가 되어졌다.

  • PDF

Performance Assessment of SFM Pulse in Reverberation Environment

  • Shin Seung-Je;Lee Hyung-Soo;Bae Eun-Hyon;Park Do-Hyun;Lee Kyun-Kyung
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.254-257
    • /
    • 2004
  • In shallow water, the performance of the operating active sonar systems is usually limited by reverberation. One of the measure to overcome the negative effect of reverberation is of selecting an adequate transmission pulse. SFM(Sinusoidal Frequency Modulation) pulse has been received a considerable attention as a candidate for suppressing the reverberation effect. In this paper, we analyze the detection performance of SFM pulse with respect to modulation frequency and bandwidth. To conduct the analysis. we synthesize the signal at the receiver considering. the transmitter. the receiver, and the propagation medium characteristcs. The simulations provide the optimum modulation frequency and bandwidth under the given situation.

  • PDF