DOI QR코드

DOI QR Code

Frequency-Modulated Pulse-Amplification Method for Reducing Pulse Shape Distortion

  • Jeong, Jihoon (Department of Advanced Green Energy and Environment, Handong Global University) ;
  • Cho, Seryeyohan (Department of Advanced Green Energy and Environment, Handong Global University) ;
  • Hwang, Seungjin (Department of Advanced Green Energy and Environment, Handong Global University) ;
  • Yu, Tae Jun (Department of Advanced Green Energy and Environment, Handong Global University)
  • Received : 2018.06.05
  • Accepted : 2018.07.31
  • Published : 2018.11.30

Abstract

To reduce the laser pulse shape distortion accompanying the amplification process and achieve an intended output pulse shape in the Nd:YAG amplifier chain, we propose a frequency-modulated pulse-amplification method. Assuming carrier-frequency-modulated seed pulses, we numerically simulate the pulse amplification in an Nd:YAG amplifier chain where severe distortion occurs. For the calculation, we develop a modified Frantz-Nodvik equation, which enables two inputs with different carrier frequencies. The simulation results indicate that the temporal contrast of the seed pulse needed to obtain a flat output pulse shape is reduced by 16 - 25 dB when frequency modulation is applied.

Keywords

Acknowledgement

Grant : Development of 125 J.Hz laser system for laser peening

Supported by : Ministry of Trade, Industry & Energy (MI)

References

  1. J. W. Yoon, S. K. Lee, T. J. Yu, J. H. Sung, T. M. Jeong and J. Lee, Opt. Commun. 285, 4112 (2012). https://doi.org/10.1016/j.optcom.2012.06.012
  2. Z. Gan, L. Yu, S. Li, C. Wang, X. Liang et al., Opt. Express 25, 5169 (2017). https://doi.org/10.1364/OE.25.005169
  3. J. P. Phillips, S. Banerjee, J. Smith, T. Davenne, K. Ertel et al., Opt. Express 24, 19682 (2016). https://doi.org/10.1364/OE.24.019682
  4. H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer et al., Phys. Plasmas 20, 052707 (2013). https://doi.org/10.1063/1.4807331
  5. K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hickey and M. N. Zervas, Opt. Express 14, 10996 (2006). https://doi.org/10.1364/OE.14.010996
  6. D. N. Schimpf, C. Ruchert, D. Nodop, J. Limpert, A. Tunnermann and F. Salin, Opt. Express 16, 17637 (2008). https://doi.org/10.1364/OE.16.017637
  7. A. Malinowski, K. T. Vu, K. K. Chen, J. Nilsson, Y. Jeong et al., Opt. Express 17, 20927 (2009). https://doi.org/10.1364/OE.17.020927
  8. M. Michalska, J. Swiderski and M. Mamajek, Opt. Laser Technol. 60, 8 (2014). https://doi.org/10.1016/j.optlastec.2013.12.015
  9. R. A. Meijer, A. S. Stodolna, K. S. E. Eikema and S. Witte, Opt. Lett. 42, 2758 (2017). https://doi.org/10.1364/OL.42.002758
  10. L. M. Frantz and J. S. Nodvik, J. Appl. Phys. 34, 2346 (1963). https://doi.org/10.1063/1.1702744
  11. https://photonics.ixblue.com/products-list/intensity-modulators (citing date: 5 Jun 2018).
  12. https://www.jenoptik.com/products/optoelectronic-systems/light-modulation/integrated-optical-modulators-fiber-coupled/amplitude-modulator (citing date: 5 Jun 2018).
  13. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu et al., Appl. Phys. B Lasers Opt. 71, 469 (2000). https://doi.org/10.1007/s003400000394
  14. D. Radnatarov, S. Kobtsev, S. Khripunov and V. Lunin, Opt. Express 23, 27322 (2015). https://doi.org/10.1364/OE.23.027322
  15. P. A. Schulz and S. R. Henion, Opt. Lett. 16, 578 (1991). https://doi.org/10.1364/OL.16.000578
  16. Y. Zheng, H. Lu, Y. Li, K. Zhang and K. Peng, Appl. Phys. B Lasers Opt. 90, 485 (2008). https://doi.org/10.1007/s00340-007-2889-y
  17. X. Xu, X. Li, R. Yan, Y. Ma, Z. Dong et al., Opt. Express 25, 23199 (2017). https://doi.org/10.1364/OE.25.023199
  18. https://photonics.ixblue.com/products-list-detail/modbox-laser-front-end (citing date: 24 Jul 2018).
  19. D. Park, J. Jeong and T. J. Yu, ArXiv:1805.01235 [Physics Optics].
  20. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, New York, 2006).
  21. Y. Sato and T. Taira, Opt. Mater. Express 2, 1076 (2012). https://doi.org/10.1364/OME.2.001076
  22. J. Jeong, S. Cho and T. J. Yu, Opt. Express 25, 3946 (2017). https://doi.org/10.1364/OE.25.003946
  23. S. Hwang, J. Jeong, S. Cho, J. Lee and T. J. Yu, J. Korean Phys. Soc. 71, 652 (2017). https://doi.org/10.3938/jkps.71.652
  24. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong and J. Lee, Opt. Lett. 35, 3021 (2010). https://doi.org/10.1364/OL.35.003021
  25. T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong and J. Lee, Opt. Express 20, 10807 (2012). https://doi.org/10.1364/OE.20.010807
  26. J-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques and Applications on a Femtosecond Time Scale, 2nd ed. (Elsevier/Academic Press, 2006), Chap. 3.2.2, p. 156.
  27. R. Paschotta, J. Nilsson, A. C. Tropper and D. C. Hanna, IEEE J. Quantum Electron. 33, 1049 (1997). https://doi.org/10.1109/3.594865

Cited by

  1. Modeling and Analysis of High-Power Ti:sapphire Laser Amplifiers-A Review vol.9, pp.12, 2018, https://doi.org/10.3390/app9122396