Browse > Article
http://dx.doi.org/10.3938/jkps.73.1637

Frequency-Modulated Pulse-Amplification Method for Reducing Pulse Shape Distortion  

Jeong, Jihoon (Department of Advanced Green Energy and Environment, Handong Global University)
Cho, Seryeyohan (Department of Advanced Green Energy and Environment, Handong Global University)
Hwang, Seungjin (Department of Advanced Green Energy and Environment, Handong Global University)
Yu, Tae Jun (Department of Advanced Green Energy and Environment, Handong Global University)
Abstract
To reduce the laser pulse shape distortion accompanying the amplification process and achieve an intended output pulse shape in the Nd:YAG amplifier chain, we propose a frequency-modulated pulse-amplification method. Assuming carrier-frequency-modulated seed pulses, we numerically simulate the pulse amplification in an Nd:YAG amplifier chain where severe distortion occurs. For the calculation, we develop a modified Frantz-Nodvik equation, which enables two inputs with different carrier frequencies. The simulation results indicate that the temporal contrast of the seed pulse needed to obtain a flat output pulse shape is reduced by 16 - 25 dB when frequency modulation is applied.
Keywords
Pulse shaping; Pulse distortion; Nd:YAG; Frequency modulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. W. Yoon, S. K. Lee, T. J. Yu, J. H. Sung, T. M. Jeong and J. Lee, Opt. Commun. 285, 4112 (2012).   DOI
2 Z. Gan, L. Yu, S. Li, C. Wang, X. Liang et al., Opt. Express 25, 5169 (2017).   DOI
3 J. P. Phillips, S. Banerjee, J. Smith, T. Davenne, K. Ertel et al., Opt. Express 24, 19682 (2016).   DOI
4 H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer et al., Phys. Plasmas 20, 052707 (2013).   DOI
5 K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hickey and M. N. Zervas, Opt. Express 14, 10996 (2006).   DOI
6 D. N. Schimpf, C. Ruchert, D. Nodop, J. Limpert, A. Tunnermann and F. Salin, Opt. Express 16, 17637 (2008).   DOI
7 A. Malinowski, K. T. Vu, K. K. Chen, J. Nilsson, Y. Jeong et al., Opt. Express 17, 20927 (2009).   DOI
8 M. Michalska, J. Swiderski and M. Mamajek, Opt. Laser Technol. 60, 8 (2014).   DOI
9 R. A. Meijer, A. S. Stodolna, K. S. E. Eikema and S. Witte, Opt. Lett. 42, 2758 (2017).   DOI
10 L. M. Frantz and J. S. Nodvik, J. Appl. Phys. 34, 2346 (1963).   DOI
11 https://photonics.ixblue.com/products-list/intensity-modulators (citing date: 5 Jun 2018).
12 https://www.jenoptik.com/products/optoelectronic-systems/light-modulation/integrated-optical-modulators-fiber-coupled/amplitude-modulator (citing date: 5 Jun 2018).
13 J. Lu, M. Prabhu, J. Song, C. Li, J. Xu et al., Appl. Phys. B Lasers Opt. 71, 469 (2000).   DOI
14 D. Radnatarov, S. Kobtsev, S. Khripunov and V. Lunin, Opt. Express 23, 27322 (2015).   DOI
15 P. A. Schulz and S. R. Henion, Opt. Lett. 16, 578 (1991).   DOI
16 Y. Zheng, H. Lu, Y. Li, K. Zhang and K. Peng, Appl. Phys. B Lasers Opt. 90, 485 (2008).   DOI
17 X. Xu, X. Li, R. Yan, Y. Ma, Z. Dong et al., Opt. Express 25, 23199 (2017).   DOI
18 https://photonics.ixblue.com/products-list-detail/modbox-laser-front-end (citing date: 24 Jul 2018).
19 D. Park, J. Jeong and T. J. Yu, ArXiv:1805.01235 [Physics Optics].
20 W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, New York, 2006).
21 Y. Sato and T. Taira, Opt. Mater. Express 2, 1076 (2012).   DOI
22 J. Jeong, S. Cho and T. J. Yu, Opt. Express 25, 3946 (2017).   DOI
23 S. Hwang, J. Jeong, S. Cho, J. Lee and T. J. Yu, J. Korean Phys. Soc. 71, 652 (2017).   DOI
24 J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong and J. Lee, Opt. Lett. 35, 3021 (2010).   DOI
25 T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong and J. Lee, Opt. Express 20, 10807 (2012).   DOI
26 R. Paschotta, J. Nilsson, A. C. Tropper and D. C. Hanna, IEEE J. Quantum Electron. 33, 1049 (1997).   DOI
27 J-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques and Applications on a Femtosecond Time Scale, 2nd ed. (Elsevier/Academic Press, 2006), Chap. 3.2.2, p. 156.