• Title/Summary/Keyword: pseudo-points

Search Result 100, Processing Time 0.022 seconds

LIMIT SETS OF POINTS WHOSE STABLE SETS HAVE NONEMPTY INTERIOR

  • Koo, Ki-Shik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.343-348
    • /
    • 2007
  • In this paper, we show that if a homeomorphism has the pseudo-orbit-tracing-property and its nonwandering set is locally connected, then the limit sets of wandering points whose stable sets have nonempty interior consist of single periodic orbit.

  • PDF

BETCHOV-DA RIOS EQUATION BY NULL CARTAN, PSEUDO NULL AND PARTIALLY NULL CURVE IN MINKOWSKI SPACETIME

  • Melek Erdogdu;Yanlin Li;Ayse Yavuz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1265-1280
    • /
    • 2023
  • The aim of this paper is to investigate Betchov-Da Rios equation by using null Cartan, pseudo null and partially null curve in Minkowski spacetime. Time derivative formulas of frame of s parameter null Cartan, pseudo null and partially null curve are examined, respectively. By using the obtained derivative formulas, new results are given about the solution of Betchov-Da Rios equation. The differential geometric properties of these solutions are obtained with respect to Lorentzian causal character of s parameter curve. For a solution of Betchov-Da Rios equation, it is seen that null Cartan s parameter curves are space curves in three-dimensional Minkowski space. Then all points of the soliton surface are flat points of the surface for null Cartan and partially null curve. Thus, it is seen from the results obtained that there is no surface corresponding to the solution of Betchov-Da Rios equation by using the pseudo null s parameter curve.

On Adaptation to Sparse Design in Bivariate Local Linear Regression

  • Hall, Peter;Seifert, Burkhardt;Turlach, Berwin A.
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.2
    • /
    • pp.231-246
    • /
    • 2001
  • Local linear smoothing enjoys several excellent theoretical and numerical properties, an in a range of applications is the method most frequently chosen for fitting curves to noisy data. Nevertheless, it suffers numerical problems in places where the distribution of design points(often called predictors, or explanatory variables) is spares. In the case of univariate design, several remedies have been proposed for overcoming this problem, of which one involves adding additional ″pseudo″ design points in places where the orignal design points were too widely separated. This approach is particularly well suited to treating sparse bivariate design problem, and in fact attractive, elegant geometric analogues of unvariate imputation and interpolation rules are appropriate for that case. In the present paper we introduce and develop pseudo dta rules for bivariate design, and apply them to real data.

  • PDF

Multidimensional Scaling Using the Pseudo-Points Based on Partition Method (분할법에 의한 가상점을 활용한 다차원척도법)

  • Shin, Sang Min;Kim, Eun-Seong;Choi, Yong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1171-1180
    • /
    • 2015
  • Multidimensional scaling (MDS) is a graphical technique of multivariate analysis to display dissimilarities among individuals into low-dimensional space. We often have two kinds of MDS which are metric MDS and non-metric MDS. Metric MDS can be applied to quantitative data; however, we need additional information about variables because it only shows relationships among individuals. Gower (1992) proposed a method that can represent variable information using trajectories of the pseudo-points for quantitative variables on the metric MDS space. We will call his method a 'replacement method'. However, the trajectory can not be represented even though metric MDS can be applied to binary data when we apply his method to binary data. Therefore, we propose a method to represent information of binary variables using pseudo-points called a 'partition method'. The proposed method partitions pseudo-points, accounting both the rate of zeroes and ones. Our metric MDS using the proposed partition method can show the relationship between individuals and variables for binary data.

SOLUTIONS OF SYSTEMS OF VARIATIONAL INEQUALITIES ON FIXED POINTS OF NONEXPANSIVE MAPPINGS

  • Piri, Hossein
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.621-640
    • /
    • 2014
  • In this paper, we introduce a new approximating method for finding the common element of the set of fixed points of nonexpansive mappings and the set of solution of system variational inequalities for finite family of inverse strongly monotone mappings and strictly pseudo-contractive of Browder-Petryshyn type mappings. We show that the sequence converges strongly to a common element the above two sets under some parameter controling conditions. Our results improve and extend the results announced by many others.

THE PSEUDO ORBIT TRACING PROPERTY AND EXPANSIVENESS ON UNIFORM SPACES

  • Lee, Kyung Bok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.255-267
    • /
    • 2022
  • Uniform space is a generalization of metric space. The main purpose of this paper is to extend several results contained in [5, 6] which have for an expansive homeomorphism with the pseudo orbit tracing property(POTP in short) on a compact metric space (X, d) for an expansive homeomorphism with the POTP on a compact uniform space (X, 𝒰). we characterize stable and unstable sets, sink and source and saddle, recurrent points for an expansive homeomorphism which has the POTP on a compact uniform space (X, 𝒰).

Driving altitude generation method with pseudo-3D building model for unmanned aerial vehicles

  • Hyeon Joong Wi;In Sung Jang;Ahyun Lee
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.240-253
    • /
    • 2023
  • Spatial information is geometrical information combined with the properties of an object. In city areas where unmanned aerial vehicle (UAV) usage demand is high, it is necessary to determine the appropriate driving altitude considering the height of buildings for safe driving. In this study, we propose a data-provision method that generates the driving altitude of UAVs with a pseudo-3D building model. The pseudo-3D building model is developed using high-precision spatial information provided by the National Geographic Information Institute. The proposed method generates the driving altitude of the UAV in terms of tile information, including the UAV's starting and arrival points and a straight line between the two points, and provides the data to users. To evaluate the efficacy of the proposed method, UAV driving altitude information was generated using data of 763 551 pseudo-3D buildings in Seoul. Subsequently, the generated driving altitude data of the UAV was verified in AirSim. In addition, the execution time of the proposed method and the calculated driving altitude were analyzed.

Pseudo Image Composition and Sensor Models Analysis of SPOT Satellite Imagery of Non-Accessible Area (비접근 지역에 대한 SPOT 위성영상의 Pseudo영상 구성 및 센서모델 분석)

  • 방기인;조우석
    • Proceedings of the KSRS Conference
    • /
    • 2001.03a
    • /
    • pp.140-148
    • /
    • 2001
  • The satellite sensor model is typically established using ground control points acquired by ground survey Of existing topographic maps. In some cases where the targeted area can't be accessed and the topographic maps are not available, it is difficult to obtain ground control points so that geospatial information could not be obtained from satellite image. The paper presents several satellite sensor models and satellite image decomposition methods for non-accessible area where ground control points can hardly acquired in conventional ways. First, 10 different satellite sensor models, which were extended from collinearity condition equations, were developed and then the behavior of each sensor model was investigated. Secondly, satellite images were decomposed and also pseudo images were generated. The satellite sensor model extended from collinearity equations was represented by the six exterior orientation parameters in 1$^{st}$, 2$^{nd}$ and 3$^{rd}$ order function of satellite image row. Among them, the rotational angle parameters such as $\omega$(omega) and $\phi$(phi) correlated highly with positional parameters could be assigned to constant values. For non-accessible area, satellite images were decomposed, which means that two consecutive images were combined as one image. The combined image consists of one satellite image with ground control points and the other without ground control points. In addition, a pseudo image which is an imaginary image, was prepared from one satellite image with ground control points and the other without ground control points. In other words, the pseudo image is an arbitrary image bridging two consecutive images. For the experiments, SPOT satellite images exposed to the similar area in different pass were used. Conclusively, it was found that 10 different satellite sensor models and 5 different decomposed methods delivered different levels of accuracy. Among them, the satellite camera model with 1$^{st}$ order function of image row for positional orientation parameters and rotational angle parameter of kappa, and constant rotational angle parameter omega and phi provided the best 60m maximum error at check point with pseudo images arrangement.

  • PDF

ITERATIVE APPROXIMATION OF FIXED POINTS FOR STRONGLY PSEUDO-CONTRACTIVE MAPPINGS

  • Sharma, Sushil;Deshpande, Bhavana
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.43-51
    • /
    • 2002
  • The aim of this paper is to prove a convergence theorem of a generalized Ishikawa iteration sequence for two multi-valued strongly pseudo-contractive mappings by using an approximation method in real uniformly smooth Banach spaces. We generalize and extend the results of Chang and Chang, Cho, Lee, Jung, and Kang.