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PERIODIC POINTS WHOSE STABLE
SETS HAVE NONEMPTY INTERIOR

Ki-Shik Koo*

Abstract. In this paper, we show that if a homeomorphism has the
pseudo-orbit-tracing-property and its nonwandering set is locally connected,
then the points whose stable sets have nonempty interior are periodic points.

1. Introduction and preliminaries

Throughout this paper, let X be a compact metric space with a metric

function d and f be a homeomorphism of X. Our purpose here is to study

dynamical properties of homeomorphisms together with the related con-

cepts of nonwanderingness, chain recurrence and the pseudo-orbit-tracing-

property. In [7], Ruess and Summers studied the motions whose limit sets

consist of a single periodic motion. In [6], Ombach gave necessary and suffi-

cient conditions that a limit set of a point consists of a single periodic orbit

under the condition that f is expansive homomorphism with the pseudo-

orbit-tracing-property. Also, author studied stable points whose limit sets

consist of single periodic orbit [4] and also study the dynamical properties

of nonwandering points whose stable sets have nonempty interior [5].

Here, we show that if f has the pseudo-orbit-tracing-property and its

nonwandering set is locally connected, then the points whose stable sets

have nonempty interior are periodic points.

For x in X, Of (x), O+
f (x) and O−

f (x) denote the f -orbit, positive f -

orbit and negative f -orbit of x, respectively. Let C(f) and Ω(f) be the

recurrent set and nonwandering set of f , respectively. Recall that C(f)

={x ∈ X : x ∈ ωf (x) ∩ αf (x), where ωf (x) and αf (x) denote the positive

and negative limit set of x for f ,respectively, and Ω(f) = {x ∈ X : for every
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neighborhood U of x and integer n0 > 0 there exists an integer n ≥ n0 such

that fn(U) ∩ U 6= ∅}.
A sequence of points {xi}i∈(a,b), (−∞ ≤ a < b ≤ ∞), is called a δ-pseudo-

orbit of f if d(f(xi), xi+1) < δ for i ∈ (a, b − 1). A finite pseudo-orbit

{x0, x1, . . . , xn} is called a pseudo-orbit from x0 to xn. Let x, y ∈ X. x is

related to y (written x ∼ y) if there are γ-pseudo-orbits of f from x to y

and y to x for every γ > 0. CR(f) = {x ∈ X : x ∼ x} is called the chain

recurrent set of f . The relation ∼ is an equivalence relation in CR(f). A

chain component is an equivalence class in CR(f) under the relation ∼. A

sequence of points {xi}i∈(a,b) is called ε-traced by x ∈ X if d(f i(x), xi) < ε

holds for i ∈ (a, b). We say that f has the pseudo-orbit-tracing-property if

for every ε > 0 there is a δ > 0 such that every δ-pseudo-orbit of f can be

ε-traced by some point x ∈ X.

A subset M of X is called f -minimal if f -orbit of every point in M is

dense in M .

Let B(x, ε) denote {y ∈ X : d(x, y) < ε} and M denote the closure of

M ⊂ X.

2. Basic results

Here, we introduce several lemmas which are used in this paper.

Lemma 1 [4]. Each connected component of CR(f) is contained in a

chain component of CR(f).

Lemma 2 [2,3]. If f has the pseudo-orbit-tracing-property, then the fol-

lowing properties hold;

(1) fk has the pseudo-orbit-tracing-property for every nonzero integer

k;

(2) f restricted to its nonwandering set has the pseudo-orbit-tracing-

property;

(3) if Y is an open and closed f -invariant subset of X, then f restricted

to Y has the pseudo-orbit-tracing-property;

(4) C(f) = Ω(f) = CR(f) holds.
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Lemma 3 [1]. If X is a nontrivial connected f -minimal set, then f does

not satisfy the pseudo-orbit-tracing-property.

From here to the end of this paper, we assume that f has the pseudo-

orbit-tracing-property and its nonwandering set is locally connected. Note

that if the nonwandering set is connected, then f must be a nonwandering

homeomorphism.

Theorem 4. There is a decomposition of Ω(f) satisfying the followings;

(1) There is a decomposition of Ω(f) into disjoint closed sets ; Ω(f) =

Ω1 ∪Ω2 ∪ · · · ∪Ωk such that each Ωi is f -invariant and f restricted

to each Ωi is topologically transitive.

(2) Again, there is a decomposition of each Ωi into disjoint closed sets

; Ωi = Ωi
1 ∪ Ωi

2 ∪ · · ·Ωi
ni

and these sets are permuted by f .

Here, each Ωi is a chain component and each Ωi
j is a connected component

of Ω(f)

Proof. By the local connectedness of Ω(f), we can find a finite number

of pairwise disjoint connected components of Ω(f) which form a covering of

Ω(f). According to Lemma 1, Ω(f) decomposes as a finite disjoint union of

chain components of Ω(f) :

Ω(f) = Ω1 ∪ Ω2 ∪ · · · ∪ Ωk,

and each Ωi decomposes as a finite disjoint union of connected components

of Ω(f) :

Ωi = Ωi
1 ∪ Ωi

2 ∪ · · ·Ωi
ni

.

It is well known that each chain component is f -invariant closed. It is not

difficult to show that f restrictd to each Ωi is topologically transitive.

Next, we prove the part (2) of this result. Fix i ∈ {1, 2, · · · , k}. Observe

that since continuous images of connected sets are also connected, we have

(1) f(Ωi
j1) ∩ Ωi

j2 6= ∅ implies f(Ωi
j1) = Ωi

j2 .
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Using this fact, now, we prove that {Ωi
j}, (1 ≤ j ≤ ni), is permuted by f .

Since f |Ωi is topologically transitive, there is a point in Ωi
1 whose orbit is

dense in Ωi. In view of (1), this implies that, for every 1 ≤ j ≤ ni,

(2) fni(Ωi
1) = Ωi

j for some integer nj .

Without loss of generality, let us assume that {Ωi
1,Ω

i
2, · · · , Ωi

l}, (1 ≤ l ≤ ni),

is permuted by f . Then, for j with l < j ≤ ni, we have

(3) fn(Ωi
1) ∩ Ωi

j = ∅ for every integer n.

The contradiction between (2) and (3) shows that {Ωi
j} is permuted by f .

By renumbering suitably, we get a decomposition of Ωi, as given in the part

(2) of this theorem. This completes the proof. ¤

For x ∈ X the stable set and unstable set of a homeomorphism f are

defined by

W s(x, f) = {y ∈ X : lim
n→∞

d(fn(x), fn(y)) = 0},
Wu(x, f) = {y ∈ X : lim

n→∞
d(f−n(x), f−n(y)) = 0}.

Let intWσ(x, f), (σ = s, u) denote the set of interior points of Wσ(x, f)

and let intWσ(x, f)Ω(f) denote the set of interior points of Wσ(x, f)∩Ω(f)

in the subspace Ω(f) of X.

Lemma 5. If K is a nontrivial connected component of Ω(f) and x ∈ K,

then intWσ(x, f) = ∅, (σ = s, u).

Proof. Let K be a nontrivial connected component of Ω(f) and x ∈ K.

We start with σ = s. Suppose, on the contrary that intW s(x, f) 6= ∅. By the

Theorem 4, there is a positive integer m such that fm(K) = K. Let g denote

fm for convenience and 0 < c0 < min{d(Ki,Kj)}, where {(Ki,Kj)} is the

set of pairs of disjoint connected component of Ω(f). Note that K ⊂ Ω(g).

It is clear that also intW s(x, g) is not an empty set.

First, we claim that ωg(x) = K. To see this, assume on the contrary,

that ωg(x) is a proper subset of K. Let p ∈ K \ ωg(x) and d(p, ωg(x)) = α,
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since intW s(x, g)Ω(g) 6= ∅, we can take a point y and a positive number ξ

with ξ <min{c0, α/4} satisfying that

y ∈ B(y, ξ) ∩ Ω(g) ⊂ intW s(x, g)Ω(g).

Let δ = δ(ξ) (< ξ) be a positive number with the property of the pseudo-

orbit-tracing-property of g. Since K is connected, we can take a δ-pseudo-

orbit {zi} = {z1, z2, · · · , zN} of g from p to y. By the pseudo-orbit-tracing-

property of g, there exists a point p1 ξ-tracing this pseudo-orbit {zi}. In

particular, we get

p1 ∈ B(p, ξ) and gN (p1) ∈ B(y, ξ).

Using the continuity of g, we can choose an open neighborhood W of p1

satisfying that

p1 ∈ W ⊂ B(p, ξ) and gN (W ) ⊂ B(y, ξ).

On the other hand, since C(g) = Ω(g), we can choose a point p2 satisfying

that

p2 ∈ W ∩ C(g) and gN (p2) ⊂ B(y, ξ) ⊂ intW s(x, g)Ω(g).

Since d(gn(gN (p2)), gn(x)) tends to zero as n goes to infinity, there exists a

positive integer L1 satisfying that

d(gn(gN (p2), gn(x)) <
α

4
, for every n > L1.

Also, there is a positive integer L2 satisfying that

d(gn(x), ωg(x)) <
α

4
for every n > L2.

Let L3 be a positive integer with L3 > max{L1, L2}. Then we have

(1) d(ωg(x), gn(gN (p2))) < d(ωg(x), gn(x)) + d(gn(x), gn(gN (p2))) <
α

2
.

for every n > L3. Since p2 ∈ C(g), we can select a positive integer L with

L > L3 satisfying that

(2) gL(gN (p2)) ∈ W ⊂ B(p, ξ) ⊂ B(p,
α

4
).
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By (1) and (2), we get the following inclusions.

gL(gN (p2)) ⊂ W ∩B(ωg(x),
α

2
) ⊂ B(p,

α

2
) ∩B(ωg(x),

α

2
).

This shows that d(p, ωg(x)) < α. This contradicts the fact that d(p, ωg(x)) =

α. Hence, we obtain that ωg(x) = K as desired.

Since restriction g|K has the pseudo-orbit-tracing-property and K is con-

nected, K is not g-minimal by Lemma 3. Let M be a g-minimal proper

subset of K. Let q ∈ K \ M and d(q,M) = β. Choose ε > 0 with

ε < min{c0, β/3}. Choose a point y and a positive number ζ < ε such

that

B(y, ζ) ∩ Ω(g) ⊂ intW s(x, g)Ω(g).

Let δ = δ(ζ) be a number with the property of the pseudo-orbit-tracing

-property of g. Let z ∈ M . Take a δ-pseudo-orbit {v0, v1, · · · , vL} of g from

y to z. Consider the following δ pseudo-orbit of g ;

{bi}∞i=0 = {v0, v1, · · · vL, g(z), g2(z), g3(z), · · · }.

Then there exists a point yb ζ-tracing the pseudo-orbit {bi}. In particular,

we have

(3) d(y, yb) < ζ and d(gi(gL(yb)), gi(z)) < ζ

for every i ≥ 0. Note that

(4) M = O+
g (gj(z)) for every integer j.

Therefore, by (3) and (4), the following inclusions hold ;

(5) ωg(yb) = ωg(gL(yb)) ⊂ B(M, ζ) ⊂ B(M, 2ζ).

Also, yb ∈ B(y, ζ) ∩ Ω(g) ⊂ intW s(x, g)Ω(g) implies that there is a positive

integer J satisfying that

d(gn(x), gn(yb)) < ζ for every n ≥ J.
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This implies that

(6) ωg(x) = ωg(gJ(x)) ⊂ B(ωg(gJ (yb)), ζ)) = B(ωg(yb), ε).

By (5) and (6), we obtain the following inclusions ;

K = ωg(x) ⊂ B(ωg(yb), ε) ⊂ B(M, 2ζ + ε) ⊂ B(M, 3ε).

Therefore, we have d(q, M) < 3ε < β and this contradicts the fact that

d(q, M) = β. Hence, we conclude that intW s(x, f) = ∅. One can use

the similar method used in the above argument to obtain the fact that

intWu(x, f) = ∅. This completes the proof. ¤

Theorem 2.6. Let intWσ(x, f) 6= ∅, (σ = s, u). Then the followings

hold :

(1) If x is an wandering point of f , then its limit set consists of single

periodic orbit.

(2) If x is a nonwandering point of f , then x is a periodic point.

Proof. (1). See [5].

(2). Let x be a nonwandering point and σ = s. If x is in a nontrivial

connected component of Ω(f) Then, by the previous lemma, intW s(x, f) =

∅. Thus x must be in a trivial connected component K of Ω(f). Therefore

{x} = K and by Theorem 4, fn(x) = x for some nonnegative integer n.

Thus x is a periodic point. The conclusion in the case that σ = u is also

obtained similarly. ¤
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