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PERIODIC POINTS WHOSE STABLE
SETS HAVE NONEMPTY INTERIOR

K1-Saik Koo*

ABSTRACT. In this paper, we show that if a homeomorphism has the
pseudo-orbit-tracing-property and its nonwandering set is locally connected,
then the points whose stable sets have nonempty interior are periodic points.

1. Introduction and preliminaries

Throughout this paper, let X be a compact metric space with a metric
function d and f be a homeomorphism of X. Our purpose here is to study
dynamical properties of homeomorphisms together with the related con-
cepts of nonwanderingness, chain recurrence and the pseudo-orbit-tracing-
property. In [7], Ruess and Summers studied the motions whose limit sets
consist of a single periodic motion. In [6], Ombach gave necessary and suffi-
cient conditions that a limit set of a point consists of a single periodic orbit
under the condition that f is expansive homomorphism with the pseudo-
orbit-tracing-property. Also, author studied stable points whose limit sets
consist of single periodic orbit [4] and also study the dynamical properties
of nonwandering points whose stable sets have nonempty interior [5].

Here, we show that if f has the pseudo-orbit-tracing-property and its
nonwandering set is locally connected, then the points whose stable sets
have nonempty interior are periodic points.

For z in X, O¢(z), O;{(a;) and O} (z) denote the f-orbit, positive f-
orbit and negative f-orbit of x, respectively. Let C(f) and Q(f) be the
recurrent set and nonwandering set of f, respectively. Recall that C(f)
={r € X : x € wg(z) Nay(x), where wy(z) and a¢(x) denote the positive
and negative limit set of = for f,respectively, and Q(f) = {x € X : for every
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neighborhood U of x and integer ng > 0 there exists an integer n > ng such
that f*(U)NU # 0}.

A sequence of points {;}c(a,p), (—00 < a < b < 00), is called a 0-pseudo-
orbit of f if d(f(x;),ziy1) < 6 for i € (a,b —1). A finite pseudo-orbit
{zg,21,...,2,} is called a pseudo-orbit from z( to z,. Let z,y € X. z is
related to y (written x ~ y) if there are y-pseudo-orbits of f from x to y
and y to x for every v > 0. CR(f) = {z € X : © ~ z} is called the chain
recurrent set of f. The relation ~ is an equivalence relation in CR(f). A
chain component is an equivalence class in CR(f) under the relation ~. A
sequence of points {a;}ie(qp) is called e-traced by x € X if d(f'(x), ;) < e
holds for i € (a,b). We say that f has the pseudo-orbit-tracing-property if
for every € > 0 there is a § > 0 such that every §-pseudo-orbit of f can be
e-traced by some point z € X.

A subset M of X is called f-minimal if f-orbit of every point in M is
dense in M.

Let B(z,e) denote {y € X : d(z,y) < €} and M denote the closure of
McCX.

2. Basic results

Here, we introduce several lemmas which are used in this paper.

LEMMA 1 [4]. Each connected component of CR(f) is contained in a

chain component of CR(f).

LEMMA 2 [2,3]. If f has the pseudo-orbit-tracing-property, then the fol-

lowing properties hold;

(1) f* has the pseudo-orbit-tracing-property for every nonzero integer
k;

(2) f restricted to its nonwandering set has the pseudo-orbit-tracing-
property;

(3) if'Y is an open and closed f-invariant subset of X, then f restricted
to Y has the pseudo-orbit-tracing-property;

(4) C(f) = Q(f) = CR(f) holds.
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LeMMA 3 [1]. If X is a nontrivial connected f-minimal set, then f does

not satisfy the pseudo-orbit-tracing-property.

From here to the end of this paper, we assume that f has the pseudo-
orbit-tracing-property and its nonwandering set is locally connected. Note
that if the nonwandering set is connected, then f must be a nonwandering

homeomorphism.

THEOREM 4. There is a decomposition of Q( f) satisfying the followings;

(1) There is a decomposition of Q(f) into disjoint closed sets ; Q(f) =
Q1 UQs U---UQy such that each (); is f-invariant and f restricted
to each §; is topologically transitive.

(2) Again, there is a decomposition of each 2; into disjoint closed sets
;= UQLU--- QL and these sets are permuted by f.

n
Here, each (); is a chain component and each )} is a connected component

of Q(f)

Proof. By the local connectedness of Q(f), we can find a finite number
of pairwise disjoint connected components of €( f) which form a covering of
Q(f). According to Lemma 1, Q(f) decomposes as a finite disjoint union of

chain components of Q(f) :
Qf) = U U---UQy,

and each §2; decomposes as a finite disjoint union of connected components

of Q(f) :
Q=0 UQsuU---Q

ng*

It is well known that each chain component is f-invariant closed. It is not
difficult to show that f restrictd to each €2; is topologically transitive.
Next, we prove the part (2) of this result. Fix i € {1,2,---,k}. Observe

that since continuous images of connected sets are also connected, we have

(1) FQ)NQ, #0  implies  f(Q) = Q.
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Using this fact, now, we prove that {Q;}, (1 <j <mny),is permuted by f.
Since f
dense in ;. In view of (1), this implies that, for every 1 < j < n;,

q, is topologically transitive, there is a point in QY whose orbit is

(2) f7(Q)) = Q) for some integer n;.

Without loss of generality, let us assume that {Q¢,Q%,--- ,Qi}, (1 <1 < ny),
is permuted by f. Then, for j with [ < j < n;, we have

(3) N Q; = for every integer n.

The contradiction between (2) and (3) shows that {Q;} is permuted by f.
By renumbering suitably, we get a decomposition of €2;, as given in the part
(2) of this theorem. This completes the proof. O

For x € X the stable set and unstable set of a homeomorphism f are
defined by

We(x, f) = {y € X : lim d(f"(x), ["(y)) = 0},
Wz, f) ={y € X: lim d(f™"(z), f"(y)) = O}.

Let intW?(x, f), (o0 =s, u) denote the set of interior points of W7 (z, f)
and let intW?(z, f)q(r) denote the set of interior points of W (z, f) N Q(f)
in the subspace Q(f) of X.

LEMMA 5. If K is a nontrivial connected component of Q(f) and z € K,
then intWe(x, f) =0, (o =s, u).

Proof. Let K be a nontrivial connected component of Q(f) and = € K.
We start with o = s. Suppose, on the contrary that intW#(x, f) # (. By the
Theorem 4, there is a positive integer m such that f™(K) = K. Let g denote
f™ for convenience and 0 < ¢y < min{d(K;, K;)}, where {(K;, K;)} is the
set of pairs of disjoint connected component of (f). Note that K C Q(g).
It is clear that also intW#(x, g) is not an empty set.

First, we claim that wy(x) = K. To see this, assume on the contrary,

that wy(x) is a proper subset of K. Let p € K \ wy(x) and d(p,wy(z)) = o,
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since intW?* (:c,g)Q(g) # (), we can take a point y and a positive number ¢

with & <min{cg, «/4} satisfying that

y € B(y,§) NQg) C intW?(z, g)ag)-

Let 6 = 6(&) (< &) be a positive number with the property of the pseudo-
orbit-tracing-property of g. Since K is connected, we can take a J-pseudo-
orbit {z;} = {21, 22, -+ ,2n} of g from p to y. By the pseudo-orbit-tracing-
property of g, there exists a point p; {-tracing this pseudo-orbit {z;}. In

particular, we get

p1 € B(p,€) and g"(p1) € B(y,§).

Using the continuity of g, we can choose an open neighborhood W of p;

satisfying that

p €W C B(p,€) and g (W) C B(y,§).

On the other hand, since C'(g) = 2(g), we can choose a point ps satisfying
that
p2 EWNC(g) and ¢V (p2) C B(y,&) C intW*(x, 9)a(g)-

Since d(g™ (g™ (p2)), g™ (z)) tends to zero as n goes to infinity, there exists a

positive integer L, satisfying that
n( N n o
d(g"(g" (p2),9"(x)) < 1 for every n > Lj.
Also, there is a positive integer Lo satisfying that
d(g" (x),wy(x)) < % for every n > Lo.

Let L3 be a positive integer with L3 > max{Lq, Lo}. Then we have

(07

(1) d(wy(@),9™(9" (p2))) < d(wg(), " (x)) + d(g" (@), 9" (9" (p2))) < 5-

for every m > L3. Since py € C(g), we can select a positive integer L with
L > L3 satisfying that
«

(2) 9"(g" (p2)) €W C B(p,€) € B(p, )-
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By (1) and (2), we get the following inclusions.

|2

9"(9™ (p2)) € W N B(wy(x),

o[ Q

) € B(p, 5) N Blwy (@),

).

N

This shows that d(p, wg(x)) < . This contradicts the fact that d

a. Hence, we obtain that w,(z) = K as desired.

,WQ(.%')) =

Since restriction g|x has the pseudo-orbit-tracing-property and K is con-
nected, K is not g-minimal by Lemma 3. Let M be a g-minimal proper
subset of K. Let ¢ € K\ M and d(¢,M) = (. Choose ¢ > 0 with
e < min{cp,3/3}. Choose a point y and a positive number ¢ < e such
that

B(yu C) N Q(g) C intWS(l"g)Q(g)'

Let § = 6(¢) be a number with the property of the pseudo-orbit-tracing
-property of g. Let z € M. Take a §-pseudo-orbit {vg,v1,- - ,vr} of g from
y to z. Consider the following § pseudo-orbit of g ;

{bi}Z0 = {vo, v1,- "UL79(Z)792(Z)793(Z)7 1

Then there exists a point y;, (-tracing the pseudo-orbit {b;}. In particular,

we have

(3) d(y,ys) < ¢ and d(g'(9"(w)).9'(2)) < ¢
for every ¢ > 0. Note that

(4) M = m for every integer j.

Therefore, by (3) and (4), the following inclusions hold ;

(5) wy(yp) = wy(g™(w)) € B(M, ) C B(M,2().

Also, y, € B(y,{) NQ(g) C intW?*(x, g)q(y) implies that there is a positive
integer J satisfying that

d(g"(z),9"(yp)) < ¢ for every n > J.
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This implies that

(6) wy(z) = we(g”(x)) € Blwy(g? (1)), ©)) = Blwy(ms),e).

By (5) and (6), we obtain the following inclusions ;

K =wy(x) C B(wyg(ys), ) C B(M,2¢ +¢) C B(M, 3e).

Therefore, we have d(q, M) < 3e < [ and this contradicts the fact that
d(q,M) = (. Hence, we conclude that intW#(z, f) = . One can use
the similar method used in the above argument to obtain the fact that
intW(z, f) = 0. This completes the proof. O

THEOREM 2.6. Let intW?(x, f) # 0, (0 = s, u). Then the followings
hold :

(1) If z is an wandering point of f, then its limit set consists of single
periodic orbit.

(2) If x is a nonwandering point of f, then x is a periodic point.

Proof. (1). See [5].

(2). Let x be a nonwandering point and o = s. If z is in a nontrivial
connected component of Q(f) Then, by the previous lemma, intW?#(x, f) =
(. Thus z must be in a trivial connected component K of Q(f). Therefore
{z} = K and by Theorem 4, f"(x) = z for some nonnegative integer n.
Thus z is a periodic point. The conclusion in the case that ¢ = u is also

obtained similarly. O
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