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On Adaptation to Sparse Design in Bivariate Local
Linear Regression

Peter Hall!, Burkhardt Seifert'? and Berwin A. Turlach'?

ABSTRACT

Local linear smoothing enjoys several excellent theoretical and numeri-
cal properties, and in a range of applications is the method most frequently
chosen for fitting curves to noisy data. Nevertheless, it suffers numerical
problems in places where the distribution of design points (often called pre-
dictors, or explanatory variables) is sparse. In the case of univariate design,
several remedies have been proposed for overcoming this problem, of which
one involves adding additional “pseudo” design points in places where the
original design points were too widely separated. This approach is partic-
ularly well suited to treating sparse bivariate design problems, and in fact
attractive, elegant geometric analogues of univariate imputation and interpo-
lation rules are appropriate for that case. In the present paper we introduce
and develop pseudo data rules for bivariate design, and apply them to real
data.

Keywords: Imputation; Interpolation; Kernel Methods; Nonparametric Regres-
sion; Pseudo Data; Smoothing; Tessellation; Triangulation.

1. INTRODUCTION

Problems of nonparametric regression with multivariate design points arise
with increasing frequency in a range of applications, iricluding dimension-reduction
methods such as projection pursuit and ACE (e.g. Friedman and Stuetzle 1981,
Breiman and Friedman 1985, Huber 1985), flexible multivariate models for high-
dimensional data (e.g. Friedman 1988, 1991; Friedman and Silverman 1989), and
generalized additive models (e.g. Hastie and Tibshirani 1986). In one dimension,
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the virtues of local linear smoothing are well-known (e.g. Cleveland and Devlin
1988, Fan 1993, Hastie and Loader 1993). Multivariate generalisations of theoret-
ical properties have been discussed by Ruppert and Wand (1994), in the context
of local polynomial smoothing. However, both the attractive features (such as
excellent theoretical performance) and the disadvantages (including difficulties
with sparse design) of local linear smoothing generalise. Indeed, the “curse of di-
mensionality” correctly predicts that problems arising from sparse design increase
with the number of dimensions.

In the univariate case a number of remedies have been proposed for dealing
with the sparse design problem. They include ridging and bandwidth adjustment
procedures, such as those discussed by Seifert and Gasser (1996), and local in-
terpolation methods, considered for example by Hall and Turlach (1997). The
latter are arguably the more promising in multivariate settings, not least because,
on account of the “curse”, bandwidth adjustment procedures for sparse data are
more prone to error in two or more dimensions than they are with one. They
are of long standing in statistics, since the “averaging” nature of interpolation
methods assists in reducing the stochastic component of estimators. This virtue
of interpolation has been exploited to analyse noisy data for well over a century,
dating from at least the work of Cauchy 160 years ago. See also Steffensen (1950)
and Tukey (1977).

In the present paper we propose geometric methods for determining when data
are too sparse, for imputing “pseudo” design points when they are sparse, and
for interpolating among the original data to determine the ordinates that should
be associated with pseudo design points. We describe a number of different
variants of the methods, outline their theoretical properties, and describe their
performance for two real data sets.

Our algorithms are appropriate for any multivariate local polynomial regres-
sion of any degree, although we shall consider them in detail only for local linear
smoothing and bivariate design. They are needed because general local poly-
nomial regression involves division by a matrix (the “XTW X” matrix, in the
notation of weighted linear models) which is only positive semi-definite, not pos-
itive definite. (Even positive semi-definiteness requires that the kernel used to
produce weights be nonnegative.) When the kernel is nonnegative the matrix’s
determinant can be guaranteed to be bounded away from zero by ensuring that a
subset of the design points within a neighbourhood of the point at which the esti-
mation takes place is of at least a certain size, and has at least a certain specified
geometric configuration. In the case of local linear regression we shall show that
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the minimum required number of design points is three, and that the necessary
configuration is that they form a triangle whose area is bounded from below by
a constant multiple of the square of bandwidth. Larger numbers of points, and
more complex configurations, are appropriate in other circumstances.

Once the necessary number of points and their configuration have been de-
termined, one should determine a rule for imputing new design points — that is,
for adding pseudo design points in sufficient numbers, and in such a manner, that
the minimal number-and-configuration rule is satisfied everywhere in the design
space, even beyond the boundaries if that is necessary for overcoming potential
boundary problems. There are several approaches to imputation. At one extreme
one may conduct a painstaking search of the design space, to determine all places
where, should one wish to estimate the regression mean there, problems will arise
because the number-and-configuration rule is violated; and then determine a way
of adding the bare minimum of extra design points so as to overcome the problem.

While this procedure might be regarded as statistically efficient, in that it
minimises the number of pseudo data needed, it can be computationally expen-
sive. A more practical rule is to divide the sample space into a regular lattice
of tiles, and add a pseudodatum to each tile which does not already include a
design point from the original design set. If the dimensions of the tiles are cho-
sen appropriately, depending on the degree of the fitted local polynomial and on
the bandwidth employed for the kernel weights, then one may ensure that the
number-and-configuration rule holds regardless of what happens in other tiles.
In the case of k—variate design the tiles are actually cells, for example the k-
dimensional cubes in a lattice of such sets in R*.

The required dimensions of tiles depend on their shapes, in a curious way that
demands non-standard geometric analysis to produce an optimal tiling scheme.
In the case of local linear smoothing and bivariate design, the optimal tile shape
is hexagonal. Here, optimality is defined in terms of maximising tile area; this
ensures that the least expected number of pseudo data is required. Hexagonal
tilings are a little more difficult than rectangular tilings to employ in practice,
however. Since they are only marginally more efficient than rectangular tilings
then we recommend any one of several easily-computed competitors of the latter
type.

Following imputation, the next step is to determine the ordinates associated
with pseudo design points, using an appropriate interpolation scheme. There
are many interpolation a,lgorithms,‘ of which we consider only two, founded on
Dirichlet tessellation and Delaunay triangulation, respectively.
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The main purpose of this paper is to introduce imputation and interpola-
tion rules in two dimensions, and describe their numerical performance. A more
detailed theoretical study would show that they have all the hoped-for proper-
ties in connection with common methods for choosing bandwidth. For example,
in the setting of standard asymptotic analysis (where sample size increases and
other parameter settings remain fixed) they do not interact adversely with cross-
validation or plug-in rules for bandwidth choice, no matter whether these are
global or local in character. Bearing in mind that data sparseness problems usu-
ally only affect a small proportion of the region over which we aim to estimate
a regression mean, we see that imputation and interpolation rules generally have
negligible impact on a wide variety of global bandwidth choice methods.

It is sometimes proposed that problems of data sparseness, be they in one
or higher dimensions, might be overcome by an adequate local bandwidth choice
method, such as that based on near neighbours in the design data. There are,
however, alternative viewpoints. Any local bandwidth selector that has good per-
formance for estimating a regression mean should take into account information
about that function, as well as about the design sequence. By way of contrast,
nearest neighbour methods address only variation in the design sequence. More-
over, since local bandwidth choice techniques are based on only a relatively small
fraction of the information in a sample, in particular that in the close vicinity of
the point at which inference is being conducted, they are particularly susceptible
to problems of data sparseness. As a result, they can ‘exhibit very high vari-
ability in places where the design sequence is sparse. Using an imputation-and-
interpolation rule, before making either a local or a global bandwidth selection,
is one way of avoiding these problems.

Section 2 introduces our methods in the special case of local linear smoothing
and for certain specific approaches to imputation and interpolation. Numerical
performance is described in Section 3. Theoretical properties are noted briefly in
Section 4, and technical details are deferred to an appendix.

2. METHODOLOGY

2.1. Model and Basic Estimator

In the bivariate case we observe independent and identically distributed triples
(X1,7), ..., (X4,Ys), where the X;’s are bivariate predictors (the design
points) and have a continuous distribution in IR? with density f, and the ¥;’s
are real-valued responses. The surface g(x) = E(Y|X = z) is assumed to be
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smooth, and for the sake of simplicity of notation the residuals Y; — g(X;) are
assumed to have constant variance o2 conditional on X;.

We shall use local linear methods, with kernel weights, to estimate g(x), where
x lies in the support of f. The kernel, K, will be taken to be a nonnegative
function of Euclidean distance || - || on [0,1]. We assume that an appropriate
linear transformation has been applied to the data prior to analysis, producing a
bandwidth matrix H = h I proportional to the identity. (This is done purely for
notational simplicity. More generally, we could allow for unequal values in the
diagonal, a “full” bandwidth matrix or locally varying bandwidths.) In this case,
the local linear estimator g(z) of g(z) becomes

i(x) = ef B, (2.1)

where B is the solution of

D(z)B = Z(xz) (2.2)
and, defining K; = K (|| X; — «|| / h), the 3 x 3 matrix D(x) is defined by

D(x) = 2 K 5 (X — 2)7 K
A\ CiXi—o) K Y (X)) (Xi—o)' K )

the 3 x 1 vector Z(x) is given by Z(z) = (3; Vi K;, >.; (Xi — 2)TY; KZ-)T, and
e is the first 3 x 1 unit vector.

2.2. Imputation Rules

Let us assume temporarily that the original design sequence has been aug-
mented by adding additional pseudo data, and that it is now {X7,..., X .} 2
{X1,...,Xn}, where n*—n > 0 denotes the number of imputed design points. If
the estimator §(x) were calculated for these design points, paired with ordinates
Y, then the determinant |D(z)| would equal

D@ = Y |[(x-x5 Xi-Xx1 )| KKK
1<i<j<k<n*
= S sin®(0i) |1XF — XFIP 1 XE — XFIPK K Ky
1<i<j<k<n*

where (-, ) denotes inner product and 6;;; represents the angle between X — X7
and X} — X. This formula can be deduced from a result on determinants of the
product of rectangular matrices (e.g. Rao, 1976, p. 33). Inspecting this formula



236 Peter Hall, Burkhardt Seifert and Berwin A. Turlach

we see that if K is bounded away from zero on [0,1 — §] for each § > 0 then a
sufficient condition for |D(z)| > C h* (for a constant C' depending on K) is that
for some 0 < r < 1 there exists A = A(r) such that

any circle of radius rh contains at least three design points,
pseudo or original, which form a triangle whose area is bounded (2.3)
below by Ah?.

A set of data and pseudo data which satisfies this condition will produce a matrix
D(x) that is guaranteed to be invertible, and hence such that equation (2.2) is
well conditioned. This alleviates many of the problems of sparse design.

To illustrate possibilities we consider three imputation algorithms that ensure
condition (2.3). The first is preferable from a computational viewpoint, we argue,
and so is given in more detail than the other two.

Rule 1: Tiling method. Divide the plane into a regular pattern of “tiles”, rep-
resented by a tile type 7 (e.g. hexagonal, square or triangular) and tile area
C1h?; and add a pseudo design point at the centre of any tile which does not
already contain any design points. We may select Cy = Co(7) > 0 such that
whenever C7 < Cy, any circle of radius rh < h placed into the plane contains
at least three design points (real data or pseudo data) forming a triangle whose
area is not less than Ah?, where A = A(T,r) > 0. An advantage of this al-
gorithm over that considered next is that it requires only a systematic search,
over a completely determined and finite number of possible tiles, rather than an
indeterminate sequential search over a potential continuum of candidates for .

Figure 2.1 illustrates tilings of different types 7, and Table 2.1 lists the quan-
tities (tile edge width, or tile area) that determine the supremum of possible
values of Ca(7) — or equivalently, the supremum of tile dimensions that permit
(2.3) to be satisfied for any 0 < r < 1.

Table 2.1: Maximal sidelengths and areas Co(7") for different tilings that guar-
antee three points in each circle of radius rh < h, defining a triangle of area
bounded above const. h2.

Tiling type, 7 Edge length /h  Area / h?

Regular square 1/v5 0.200
Bricked square 32/v/4745 0.216
Bricked (v/3 : 2)-rectangle 18/+/1281 0.219

Hexagonal 13/43 0.237
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In principle, a choice of tiling that maximizes face area is preferable, since it
is associated with least average requirement for generating pseudo data. In this
respect, triangular tilings may be shown to be inferior to square ones. Addition-
ally they are relatively awkward to implement, and so are not represented in the
figure or table. Those tilings that are represented are listed in order of increasing
face area: regular square, bricked square, bricked rectangle and hexagon. The
latter is not computationally attractive, however, and is not recommended for
this reason. |

For the bricked rectangular tiling, the longer side length is listed in the table.
We did not attempt to optimise bricked rectangular tilings over all ratios of side
lengths. The chosen side ratio produces rectangles whose centres are on a grid of
equilateral triangles, and appears to be close to the optimum.

Clearly, the location and orientation of the tiling have an influence on the
placing of pseudo design points. Our experience indicates that this is negligible,

however.

(a) (b)

Figure 2.1: Examples of regular tilings: (a) regular square, (b) bricked square.

Rule 2: Continuum search method. Here we select an appropriate number r; > 0,
and conduct a sequential numerical search in ]R? for all points = such that the
circle B{z) of radius r; centred at x contains no design points. adding a pseudo
design point at z if in fact there exists no X; in B(x), before passing to the next
candidate for . This rule produces a set of data and pseudo data satisfying
condition (2.3), but is not computationally attractive because of the high level of
labour involved. ‘

It is sufficient to take r; = r/3 < 1/3, where r is as in (2.3). This is made
clear by the following theorem, which is useful in deriving a range of different
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imputation rules. Its proof is based on a simple geometric argument, and is not
given here.

Theorem 2.1. Let r; < r/2, and suppose every circle of radius r1 h contains
at least one design point. Then, every circle of radius r h contains at least three
design points, which form a triangle with area bounded from below by (r—2r1)? h2.
Moreover, the centre = is inside the triangle formed by these points.

Rule 3: Edge interpolation method. Construct the Delaunay triangulation of the
convex hull of the set of design points. Divide each edge of the triangulation into
N equal parts, where N equals the smallest integer not less than {/(rh), r < 1,
and ! equals the edge length. Place a pseudo design point at each of the points
of division. Once this operation has been completed for all edges, recompute the
Delaunay triangulation for the new set of design and pseudo design points, and
repeat the division step. Continue iterating until a triangulation is produced that
has no edges longer than rh. At the termination of this algorithm, condition (2.3)
is satisfied on the set of all points that are within the convex hull of the original
design points or at most rh away of it. The condition will be satisfied over any
region of interest, not just within the convex hull of the design points, if one
uses a triangulation such as that offered by the triangulation program “Deldir”
of Turner and McQueen (1996).

2.3. Interpolation rules

There is a variety of ways of using regular data triples (X ;, Y;) so as to derive
the value YJ* associated with a pseudo design point X7. We shall consider two,
founded on the Dirichlet tessellation and Delaunay triangulation respectively. See
Ripley (1981, pp. 38 f) for an account of geometric properties of these schemes.
Rule 1: Dirichlet tessellation. Here we take YJ* =Y, where the index 4 is chosen
so that X; is the germ or centre of the unique Dirichlet cell (or tile) in which X ;
lies. We take corresponding mean values of observations in adjacent cells if X ;
lies on a cell boundary. The Dirichlet tessellation rule automatically produces
a form of horizontal extrapolation outside the convex hull of the original design
sequence.

Rule 2: Delaunay triangulation. Here, Y]* is the linear interpolant of those values
Y; paired with the three X ;’s at the vertices of the Delaunay triangle within which
X5 lies, with the obvious generalization on edges. (If one is using the third data
imputation rule introduced above then the interpolant may be derived internally
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to the algorithm.) Outside the convex hull we suggest using a form of horizontal
extrapolation, to minimize the problems of noise. One approach is to employ
Y;—values obtained from the Dirichlet tessellation rule; another is to project X ;‘
onto the convex hull of the original design sequence, and use the weighted mean
of the two adjacent observations (if the projection lies'on an edge), and the single
observation (if the projection is a single design point — this is not an event of
measure zero).

In practice we noticed that the interpolation rule based on the Dirichlet tes-
sellation produces, as one may expect, values Y]* at the pseudo design points
X which are highly discontinuous along the borders of the Dirichlet tiles. We
found that this could have an adverse effect on the subsequent smoothing step,
and on those grounds argue that the interpolation rule based on the Delaunay
triangulation is preferable.

Likewise, for the case of Delaunay triangulation, imputing values Y/ at pseudo
design points X7 lying outside the convex hull of the original data using Y’s
given by the Dirichlet tessellation rule produces erratic values Y} along the convex
hull, adversely affecting the final smooth. Hence, we recommend the second
approach, which projects each X ;‘ onto the convex hull and takes as YJ* the value
interpolated at this point.

Since the imputed data are not independent of one another then the usual
approaches to estimating the variance of an estimator of a regression mean will
not be valid. However, we argue that the “usual” approaches are generally not
valid in the context of sparse design, since they rely on asymptotic arguments
that do not admit sparsity.

3. NUMERICAL EVALUATION

To implement the methods discussed above we adapted the triangulation
program “Deldir” of Turner and McQueen (1996), which generates tessellations
using an algorithm of Lee and Schacter (1980). See also Green and Sibson (1978).

When using Delaunay triangulation, choice of the tiling rule (see Section
2.2) has only a minor effect on the:ﬁnal smooth. On grounds of computational
simplicity we prefer the regular square tiling illustrated in panel (a) of Figure 2.1.
We shall illustrate the application of this choice of imputation and interpolation
rules to two data sets.

The data for our first example come from the Clinic of Neonatology in the
University Hospital, Ziirich. Birth weight and gestational age (length of preg-
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nancy) were measured on 29 babies, to predict cerebral blood volume. Since the
scales of the two predictor variable are quite different, we rescaled both so that
they had empirical variance 1. Next, we imputed pseudo design points X} using a
regular square tiling, and computed the associated values Y;" using the Delaunay
triangulation rule. Finally, we employed a bivariate local linear smoother with
bandwidth A = 0.5 to fit a surface to the data. Figure 3.1 shows the contours of
the fitted surface, with the predictor variables transformed back to their original

scale.

1500 2000 2500

birth weight

1000

500

2‘4 2‘6 2‘8 3‘0 3‘2 3‘4 3‘6
gestational age
Figure 3.1: Contour lines for the surface fitted to the neonatal data by local
linear smoothing. Data points are denoted by circles, and the polygon depicts

the convex hull.

In this example (as in the next one) the bandwidth was chosen visually (in
ongoing work we are studying the adaptation of bandwidth selectors for this
method). Varying the bandwidth does not change the situation greatly. Increas-
ing the bandwidth pulls the contour lines further apart, since the surface becomes
smoother. Decreasing the bandwidth pushes them together. In the latter case
the lines also become more ragged and (at extremely small bandwidths) further
local extrema appear which are clearly due to undersmoothing. But in both cases
the general direction in which the contour lines are running remains the same.
The number of imputed pseudo data had no significant influence on these results.
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The second data set originated in a spatial problem discussed by O’Conner
and Leach (1979). We took the data from Green and Silverman (1994, Chapter 7)
and compared our method with the thin plate spline used by them. The data
consist of 38 sampling points, collected from a mine in Cobar, Australia. The
predictor variables X ; represent geographic locations where the “true widths”,
Y;, of the ore-bearing layer were measured.

We used the procedure described for the neonatal data. Panel (a) of Figure
3.2 shows the contour lines calculated from the surface derived by interpolating
the data. To obtain panel (b) the interpolating surface was smoothed using the
bandwidth A = 0.35. Comparing these pictures with their counterparts in Green
and Silverman (1994) we see that our method and theirs give similar results. The
only major difference is in the mode located at the uppermost boundary of the
pictures. Green and Silverman’s thin-plate spline suggests that the contour lines
at this mode have approximately a vertical axis, whereas the axis for the contours
in panel (b) of Figure 3 is inclined to the vertical.

4. THEORETICAL PROPERTIES

If the imputation or interpolation rules suggested in Section 2 are employed
then all the classical results on mean-—square properties of local linear regression
in two dimensions are valid in an unconditional sense. In particular, asymptotic
expansions of bias and variance (see e.g. Theorems 2.1 and 2.2 of Ruppert and
Wand, 1994) are valid without need for conditioning on X7y,..., Xy, and with
the subscript p removed from remainder terms o,(...). No changes are required
to the regularity conditions imposed by Ruppert and Wand on the design density
and regression mean. The only condition needed on h is that for some ¢ > 0 and
all sufficiently large n, n=(!/ 2)+e < B < n~¢ The only conditions required on K
are those imposed in Section 2.2.

We may deduce from the results in the previous paragraph that the bias and
variance of § are respectively of size A% and (nh?)™1, and that this holds uniformly
in the support of the design density f, provided the support may be represented
as a finite union of convex sets and that f is bounded away from zero on its
support. Thus, our imputation-and-interpolation approach effectively removes
all first-order problems associated with sparse design.

These properties are available because, under condition (2.3), the maximal
possible variance of §(z) is bounded by a quantity that does not depend on the
specific design configuration. Our next result makes this clear.
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L

(b)
Figure 3.2: (a) Contour lines derived from the interpolated mine data. (b) Same
as for panel (a), except that smoothing was applied using bandwidth h = 0.35.
Data points are denoted by circles, and the outer polygon depicts the convex hull.
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As in Section 2.2 we ask that the kernel K be bounded away from zero on
[0,1—4] for each § > 0. Assume that the imputation rule satisfies (2.3), and adds
no more than B, say, extra points to any circle of radius of h, where B depends
only on the rule. (This condition is satisfied by each of rules produced by Rules
1-3 of Section 2.2.) Furthermore, suppose that the interpolation rule produces
values Y;* that may be represented as ¥;* = alY, where Y = (Y,..., Y,)? and
a; is an n—vector satisfying azTai < 1. (The interpolation rules suggested in
Section 2.3 satisfy this requirement.)

Theorem 4.1. Under the above conditions there exists a constant C, depending
only on A (from (2.3)), B, r and the kernel K, such that

var {§(z)| X} < o*C.

If the three points mentioned in condition (2.8) may always be chosen to be ver-
tices of a triangle that contains x, then it suffices to choose

max K(u)
u€{0,1]

. K .
S K

C=d*(B+1)

Related results have been derived by Mammen and Marron (1996) in the
case of the shifted Nadaraya—Watson estimator, and by Herrmann (1996) for a
modified Gasser-Miiller estimator. Any one of the imputation rules presented
in Section 2 may be constructed such that they fulfill the second part of the
Theorem. (In the case of the rule determined by Rule 1, for example, it suffices
to choose tile width to be a sufficiently small multiple of h. Rule 2 already
guarantees that x is in the triangle; see Theorem 2.1.) ‘

Appendix A: Proof of Theorem 4.1

The conditional variance of §(x) is

var{g{z)} = var (el D(z)™! Z(x))

= e (XWX H{XT W Cov(Y) W* X*} (XT W X*)”

< Amax{COV(Y ™)} Amax (W) e (X TW* X*) ey,

where Apax(+) denote the maximum eigenvalue operator, and W* is the matrix
of weights computed from the original and imputed design points. Now,

Amax(W7) < Jél[%ﬁ] K(u),

1

€1
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and, since pseudo observations are of the form Y;* = a;fF Y with azT a; <1,
Amax{Cov(Y*)} < 0? (B +1).

From the Rao-Blackwell theorem, el (X*T W* X*)~! e; would be the minimal
variance of unbiased linear estimators for el 8 given Cov(Y*) = (W*)~1. One of
the estimators under comparison, g say, is the linear interpolant of three points
X7, X}, X}, say, mentioned in condition (2.3). Since the area of the triangle is
bounded from below by a constant multiple of h2, so also the sides are bounded
from below by a constant multiple of h. Hence, §(X7, X7, X}) = o ¥;" +a; fis
ap Y7, with the weights o bounded above by a constant depending only on A,
r and K. Therefore, el (X*T W* X*)"le; is bounded above by a constant
depending only on these quantities. The theorem follows from these results.

If  is inside the triangle, the weights « are nonnegative and sum to one,
whence

[

2 2

T [ v +T g% iy —1 T 1

X*w*X R R AU I, T —

e ( JTes ¢ K RS min K(u)’
u€[0,r

which proves the second part of the theorem.
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