• Title/Summary/Keyword: projective change

Search Result 17, Processing Time 0.028 seconds

SOME THEOREMS ON RECURRENT FINSLER SPACES BY THE PROJECTIVE CHANGE

  • Kim, Byung-Doo;Lee, Il-Yong
    • East Asian mathematical journal
    • /
    • v.15 no.2
    • /
    • pp.337-344
    • /
    • 1999
  • If any geodesic on $F^n$ is also a geodesic on $\={F}^n$ and the inverse is true, the change $\sigma:L{\rightarrow}\={L}$ of the metric is called projective. In this paper, we will find the condition that a recurrent Finsler space remains to be a recurrent one under the projective change.

  • PDF

Projective Change between Two Finsler Spaces with (α, β)- metric

  • Kampalappa, Narasimhamurthy Senajji;Mylarappa, Vasantha Dogehalli
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.1
    • /
    • pp.81-89
    • /
    • 2012
  • In the present paper, we nd the conditions to characterize projective change between two (${\alpha}$, ${\beta}$)-metrics, such as Matsumoto metric $L=\frac{{\alpha}^2}{{\alpha}-{\beta}}$ and Randers metric $\bar{L}=\bar{\alpha}+\bar{\beta}$ on a manifold with dim $n$ > 2, where ${\alpha}$ and $\bar{\alpha}$ are two Riemannian metrics, ${\beta}$ and $\bar{\beta}$ are two non-zero 1-formas.

GORENSTEIN PROJECTIVE DIMENSIONS OF COMPLEXES UNDER BASE CHANGE WITH RESPECT TO A SEMIDUALIZING MODULE

  • Zhang, Chunxia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.497-505
    • /
    • 2021
  • Let R → S be a ring homomorphism. The relations of Gorenstein projective dimension with respect to a semidualizing module of homologically bounded complexes between U ⊗LR X and X are considered, where X is an R-complex and U is an S-complex. Some sufficient conditions are given under which the equality ${\mathcal{GP}}_{\tilde{C}}-pd_S(S{\otimes}{L \atop R}X)={\mathcal{GP}}_C-pd_R(X)$ holds. As an application it is shown that the Auslander-Buchsbaum formula holds for GC-projective dimension.

On Special finsler Spaces With Common Geodesics

  • Kim, Byung-Doo;Park, Ha-Yong
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.2
    • /
    • pp.331-338
    • /
    • 2000
  • In the present paper, we investigate a problem in a sym-metric Finsler space, which is a special space. First we prove that if a symmetric space remains to be a symmetric one under the Z-projective change, then the space is of zero curvature. Further we will study W-recurrent space and D-recurrent space under the pro-jective change.

  • PDF

GORENSTEIN DIMENSIONS OF UNBOUNDED COMPLEXES UNDER BASE CHANGE

  • Wu, Dejun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.779-791
    • /
    • 2016
  • Transfer of homological properties under base change is a classical field of study. Let $R{\rightarrow}S$ be a ring homomorphism. The relations of Gorenstein projective (or Gorenstein injective) dimensions of unbounded complexes between $U{\otimes}^L_RX$(or $RHom_R(X,U)$) and X are considered, where X is an R-complex and U is an S-complex. In addition, some sufficient conditions are given under which the equalities $G-dim_S(U{\otimes}^L_RX)=G-dim_RX+pd_SU$ and $Gid_S(RHom_R(X,U))=G-dim_RX+id_SU$ hold.

Augmented Reality Using Projective Information (비유클리드공간 정보를 사용하는 증강현실)

  • 서용덕;홍기상
    • Journal of Broadcast Engineering
    • /
    • v.4 no.2
    • /
    • pp.87-102
    • /
    • 1999
  • We propose an algorithm for augmenting a real video sequence with views of graphics ojbects without metric calibration of the video camera by representing the motion of the video camera in projective space. We define a virtual camera, through which views of graphics objects are generated. attached to the real camera by specifying image locations of the world coordinate system of the virtual world. The virtual camera is decomposed into calibration and motion components in order to make full use of graphics tools. The projective motion of the real camera recovered from image matches has a function of transferring the virtual camera and makes the virtual camera move according to the motion of the real camera. The virtual camera also follows the change of the internal parameters of the real camera. This paper shows theoretical and experimental results of our application of non-metric vision to augmented reality.

  • PDF

Coordinate Determination for Texture Mapping using Camera Calibration Method (카메라 보정을 이용한 텍스쳐 좌표 결정에 관한 연구)

  • Jeong K. W.;Lee Y.Y.;Ha S.;Park S.H.;Kim J. J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.4
    • /
    • pp.397-405
    • /
    • 2004
  • Texture mapping is the process of covering 3D models with texture images in order to increase the visual realism of the models. For proper mapping the coordinates of texture images need to coincide with those of the 3D models. When projective images from the camera are used as texture images, the texture image coordinates are defined by a camera calibration method. The texture image coordinates are determined by the relation between the coordinate systems of the camera image and the 3D object. With the projective camera images, the distortion effect caused by the camera lenses should be compensated in order to get accurate texture coordinates. The distortion effect problem has been dealt with iterative methods, where the camera calibration coefficients are computed first without considering the distortion effect and then modified properly. The methods not only cause to change the position of the camera perspective line in the image plane, but also require more control points. In this paper, a new iterative method is suggested for reducing the error by fixing the principal points in the image plane. The method considers the image distortion effect independently and fixes the values of correction coefficients, with which the distortion coefficients can be computed with fewer control points. It is shown that the camera distortion effects are compensated with fewer numbers of control points than the previous methods and the projective texture mapping results in more realistic image.