• Title/Summary/Keyword: production forecasting

Search Result 223, Processing Time 0.023 seconds

Mid- and Short-term Power Generation Forecasting using Hybrid Model (하이브리드 모델을 이용하여 중단기 태양발전량 예측)

  • Nam-Rye Son
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.715-724
    • /
    • 2023
  • Solar energy forecasting is essential for (1) power system planning, management, and operation, requiring accurate predictions. It is crucial for (2) ensuring a continuous and sustainable power supply to customers and (3) optimizing the operation and control of renewable energy systems and the electricity market. Recently, research has been focusing on developing solar energy forecasting models that can provide daily plans for power usage and production and be verified in the electricity market. In these prediction models, various data, including solar energy generation and climate data, are chosen to be utilized in the forecasting process. The most commonly used climate data (such as temperature, relative humidity, precipitation, solar radiation, and wind speed) significantly influence the fluctuations in solar energy generation based on weather conditions. Therefore, this paper proposes a hybrid forecasting model by combining the strengths of the Prophet model and the GRU model, which exhibits excellent predictive performance. The forecasting periods for solar energy generation are tested in short-term (2 days, 7 days) and medium-term (15 days, 30 days) scenarios. The experimental results demonstrate that the proposed approach outperforms the conventional Prophet model by more than twice in terms of Root Mean Square Error (RMSE) and surpasses the modified GRU model by more than 1.5 times, showcasing superior performance.

A Prediction of Nutrition Water for Strawberry Production using Linear Regression

  • Venkatesan, Saravanakumar;Sathishkumar, VE;Park, Jangwoo;Shin, Changsun;Cho, Yongyun
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.132-140
    • /
    • 2020
  • It is very important to use appropriate nutrition water for crop growth in hydroponic farming facilities. However, in many cases, the supply of nutrition water is not designed with a precise plan, but is performed in a conventional manner. We proposes a forecasting technique for nutrition water requirements based on a data analysis for optimal strawberry production. To do this, the proposed forecasting technique uses linear regression for correlating strawberry production, soil condition, and environmental parameters with nutrition water demand for the actual two-stage strawberry production soil. Also, it includes predicting the optimal amount of nutrition water requires according to the heterogeneous cultivation environment and variety by comparing the amount of nutrition water needed for the growth and production of different kinds of strawberries. We suggested study uses two types of section beds that are compared to find out the best section bed production of strawberry growth. The dataset includes 233 samples collected from a real strawberry greenhouse, and the four predicted variables consist of the total amounts of nutrition water, average temperature, humidity, and CO2 in the greenhouse.

FLASH FLOOD FORECASTING USING ReMOTELY SENSED INFORMATION AND NEURAL NETWORKS PART I : MODEL DEVELOPMENT

  • Kim, Gwang-seob;Lee, Jong-Seok
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.113-122
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict flash floods. In this study, a Quantitative Flood Forecasting (QFF) model was developed by incorporating the evolving structure and frequency of intense weather systems and by using neural network approach. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as lifetime, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. All these processes stretched leadtime up to 18 hours. The QFF model will be applied to the mid-Atlantic region of United States in a forthcoming paper.

  • PDF

Using Different Method for petroleum Consumption Forecasting, Case Study: Tehran

  • Varahrami, Vida
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.1 no.1
    • /
    • pp.17-21
    • /
    • 2013
  • Purpose: Forecasting of petroleum consumption is useful in planning and management of petroleum production and control of air pollution. Research Design, Data and Methodology: ARMA models, sometimes called Box-Jenkins models after the iterative Box-Jenkins methodology usually used to estimate them, are typically applied to auto correlated time series data. Results: Petroleum consumption modeling plays a role key in big urban air pollution planning and management. In this study three models as, MLFF, MLFF with GARCH (1,1) and ARMA(1,1), have been investigated to model the petroleum consumption forecasts. Certain standard statistical parameters were used to evaluate the performance of the models developed in this study. Based upon the results obtained in this study and the consequent comparative analysis, it has been found that the MLFF with GARCH (1,1) have better forecasting results.. Conclusions: Survey of data reveals that deposit of government policies in recent yeas, petroleum consumption rises in Tehran and unfortunately more petroleum use causes to air pollution and bad environmental problems.

A Clustering Approach to Wind Power Prediction based on Support Vector Regression

  • Kim, Seong-Jun;Seo, In-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.108-112
    • /
    • 2012
  • A sustainable production of electricity is essential for low carbon green growth in South Korea. The generation of wind power as renewable energy has been rapidly growing around the world. Undoubtedly wind energy is unlimited in potential. However, due to its own intermittency and volatility, there are difficulties in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. To cope with this, many works have been done for wind speed and power forecasting. It is reported that, compared with physical persistent models, statistical techniques and computational methods are more useful for short-term forecasting of wind power. Among them, support vector regression (SVR) has much attention in the literature. This paper proposes an SVR based wind speed forecasting. To improve the forecasting accuracy, a fuzzy clustering is adopted in the process of SVR modeling. An illustrative example is also given by using real-world wind farm dataset. According to the experimental results, it is shown that the proposed method provides better forecasts of wind power.

Load Forecasting for Special Days Using Knowledge Base (지식기반을 이용한 특수일의 수요예측)

  • Cho, Sung-Woo;Hwang, Kab-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.698-700
    • /
    • 1996
  • A knowledge based forecasting system for special days has been developed for the economic and secure operation of electric power system. If-then production rules has been adopted in this system to be used in various environmental conditions. Graphic user interfaces enables a user to access easily to the system. The simulation based on the historical data have shown that the forecasting result was improved remarkably when compared to the results from the conventional statistical methods. The forecasting results can be used for power system operational planning to improve security and economy of the power system.

  • PDF

An Empirical Study on Forecasting Model of Popularity Rating for Drama Programs (드라마 시청률 예측모델에 대한 실증적 연구)

  • Lee, Won-Jae;Lee, Nam-Yong;Kim, Jong-Bae
    • Journal of Digital Contents Society
    • /
    • v.13 no.3
    • /
    • pp.325-334
    • /
    • 2012
  • Production of drama programs has been granted as a creative work. Thus Systematic approaches to improving quality of drama programs have hardly been tried. This research is for producing a statistical computing model that is capable of forecasting on popularity rating of drama programs produced by KBS, especially forecasting prior to the broadcasting. For the work, we traced various factors affecting on drama popularity ratings, found the relationships among the factors with a regression analysis work, and created the forecasting model on drama popularity ratings. The research result could be applied for finding proper scales of input factors necessary to drama program productions.

A novel SARMA-ANN hybrid model for global solar radiation forecasting

  • Srivastava, Rachit;Tiwaria, A.N.;Giri, V.K.
    • Advances in Energy Research
    • /
    • v.6 no.2
    • /
    • pp.131-143
    • /
    • 2019
  • Global Solar Radiation (GSR) is the key element for performance estimation of any Solar Power Plant (SPP). Its forecasting may help in estimation of power production from a SPP well in advance, and may also render help in optimal use of this power. Seasonal Auto-Regressive Moving Average (SARMA) and Artificial Neural Network (ANN) models are combined in order to develop a hybrid model (SARMA-ANN) conceiving the characteristics of both linear and non-linear prediction models. This developed model has been used for prediction of GSR at Gorakhpur, situated in the northern region of India. The proposed model is beneficial for the univariate forecasting. Along with this model, we have also used Auto-Regressive Moving Average (ARMA), SARMA, ANN based models for 1 - 6 day-ahead forecasting of GSR on hourly basis. It has been found that the proposed model presents least RMSE (Root Mean Square Error) and produces best forecasting results among all the models considered in the present study. As an application, the comparison between the forecasted one and the energy produced by the grid connected PV plant installed on the parking stands of the University shows the superiority of the proposed model.

The Load Forecasting in Summer Considering Day Factor (요일 요인을 고려한 하절기 전력수요 예측)

  • Han, Jung-Hee;Baek, Jong-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2793-2800
    • /
    • 2010
  • In this paper, we propose a quadratic (nonlinear) regression model that forecasts daily demands of electric power in summer. For cost-effective production (and/or procurement) of electric power, forecasting demands of electric power with accuracy is important, especially in summer when temperature is high. In the literature, temperature and daily demands of preceding days are typically employed to construct forecasting models. While, we consider another factor, day of the week, together with temperature and daily demands of preceding days. For validating the proposed model, we demonstrate the forecasting accuracy in terms of MAPE(Mean Absolute Percentage Error) and MPE(Maximum Percentage Error) using field data from KEPCO(Korea Electric Power Corporation) in comparison with two forecasting models in the literature. When compared with the two benchmarks, the proposed forecasting model performs far better providing MAPE and MPE not exceeding 3.08% and 8.99%, respectively, in summer from 2005 to 2009.

Optimal Electric Energy Subscription Policy for Multiple Plants with Uncertain Demand

  • Nilrangsee, Puvarin;Bohez, Erik L.J.
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.2
    • /
    • pp.106-118
    • /
    • 2007
  • This paper present a new optimization model to generate aggregate production planning by considering electric cost. The new Time Of Switching (TOS) electric type is introduced by switching over Time Of Day (TOD) and Time Of Use (TOU) electric types to minimize the electric cost. The fuzzy demand and Dynamic inventory tracking with multiple plant capacity are modeled to cover the uncertain demand of customer. The constraint for minimum hour limitation of plant running per one start up event is introduced to minimize plants idle time. Furthermore; the Optimal Weight Moving Average Factor for customer demand forecasting is introduced by monthly factors to reduce forecasting error. Application is illustrated for multiple cement mill plants. The mathematical model was formulated in spreadsheet format. Then the spreadsheet-solver technique was used as a tool to solve the model. A simulation running on part of the system in a test for six months shows the optimal solution could save 60% of the actual cost.