References
- Amburn, S.A. and Fortin, S. (1993). Use of WSR-88D and surface rain gauge network data in issuing flash flood warnings and main stem flood forecasts over Osage County, Oklahoma, June 5, 1991, in NOAA Technical Memorandum NWS ER-87, Post-print Volume,Third National Heavy Precipitation Workshop, U.S. Department of Commerce, Springfield, Virginia, pp. 321-330
- Bardossy, A., Duckstein, L., and Bogardi, I. (1995). 'Fuzzy rule-based classification of atmospheric circulation patterns.' Int. J. Clim., Vol.1 No.15, pp. 1087-1097
- Barros, A.P.and Kuligowski, R.J. (1998). 'Orographic effects during a severe wintertime rainstorm in the Appalachian Mountains.' Mon. Wea. Rev., Vol. 126, pp. 2468-2772 https://doi.org/10.1175/1520-0493(1998)126<2648:OEDASW>2.0.CO;2
- Barros, A.P. and Kuligowski, R.J. (1996). 'Quantitative precipitation forecasting issues in mountainous regions.' Proc. of the Int. Conf. on Water Resour. & Environ. Res, (I), pp. 539-546
- Bankert, R.L. (1994). 'Cloud classification of a AVHRR imagery in maritime regions using a probabilistic neural network.' J. Appl. Meteorol., Vol. 33, pp. 909-918 https://doi.org/10.1175/1520-0450(1994)033<0909:CCOAII>2.0.CO;2
- Campolo M., Andreussi P., and Soldati A. (1999). 'River flood forecasting with a neural network model.' Water Resour. Res., Vol. 35, No. 4, pp. 1191-1197 https://doi.org/10.1029/1998WR900086
- Evans, J.L. and Shemo, R.E. (1996). 'Automated identification and climatologies of various classes of convection in the Atlantic Ocean.' J. Appl. Meteorol. Vol. 35, pp. 638-652 https://doi.org/10.1175/1520-0450(1996)035<0638:APFASB>2.0.CO;2
- Fletcher, D.S. and Goss, E., (1993), 'Forecasting with neural networks: An application using bankruptcy data.' Inf. Manage., Vol. 24, pp. 159-167 https://doi.org/10.1016/0378-7206(93)90064-Z
- Hall, M.J. and Minns, A.W. (1999). 'The classification of hydrologically homogeneous regions.' Hydrol. Sci. J. des Sciences Hydrologiques, Vol. 44, No. 5, pp. 693-704
- Hall, T., Brooks, H.E., and Doswell Ⅲ, C.A. (1999). 'Precipitation forecasting using a neural network.' Weather and Forecast., Vol. 14, pp. 338-345 https://doi.org/10.1175/1520-0434(1999)014<0338:PFUANN>2.0.CO;2
-
Hassibi, B., Sayed, A.H. and Kailath, T. (1994). '
$H^4$ optimality criteria for LMS and backpropagation.' Adv. in Neural Info. Process. Systems 6, pp. 351-359 -
Hassibi, B. and Kailath, T. (1995). '
$H^4$ optimal training algorithms and their relation to backpropagation.' Adv. in Neural Info. Process. Systems 7, pp. 191-199 - Hsu, K.L., Gao, X., Sorooshian, S., and Gupta, H.V. (1997). 'Precipitation estimation from remotely sensed information using artifical neural networks.' J. Appl. Meteorol., Vol. 36, pp. 1176-1190 https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2
- Imrie, C.E., Durucan, S., and Korre, A. (2000). 'River flow prediction using artificial neural networks: generation beyond the calibration range.' J. Hydrol., Vol. 233, pp. 138-153 https://doi.org/10.1016/S0022-1694(00)00228-6
- Jinno, K., Kawamura, A., Berndtsson, R., Larson, M., and Niemczynowicz, J. (1992). 'Real-time rainfall prediction at small space-time scales using a two- dimensional stochastic advection-diffusion model.' Water Resour. Res., Vol. 29, No. 5, pp. 1489-1504 https://doi.org/10.1029/92WR02849
- Koons, H.C. Gorney, D.J. (1990). 'A sunspot maximum prediction using neural network.' Eos Trans. AGU, Vol. 71 No. 18, pp. 677
- Kuligowski, R.J. and Barros, A.P. (1998a). 'Experiments in short-term precipitation forecasting using artificial neural networks.' Mon. Weather Rev., Vol. 126, pp. 470-482 https://doi.org/10.1175/1520-0493(1998)126<0470:EISTPF>2.0.CO;2
- Kuligowski, R.J. and Barros, A.P. (1998b). 'Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks.' Weather and Forecast., Vol. 13, No. 4, pp. 1194-1204 https://doi.org/10.1175/1520-0434(1998)013<1194:LPFFAN>2.0.CO;2
- Maier, H.R. and Dandy, G.C. (1996). The use of artificial neural networks for the prediction of water quality parameters. Water Resour. Res., Vol. 32, No. 4, pp. 1013-1022 https://doi.org/10.1029/95WR03529
- Marzban, C. and Gregory, J.S. (1996). 'A neural network for tornado prediction based on Doppler radar-derived attributes.' J. Appl. Meteorol., Vol. 35, pp. 617-626 https://doi.org/10.1175/1520-0450(1996)035<0617:ANNFTP>2.0.CO;2
- Michaud, J. and Sorooshian, S. (1994). 'Comparison of simple versus complex distributed runoff model on a midsized semiarid watershed.' Water Resour. Res., Vol. 30, No. 3, pp. 593-605 https://doi.org/10.1029/93WR03218
- Minns, A.W. and Hall, M.J. (1996). 'Artificial nural networks as rainfall-runoff models.' J. Hydrol. Sci., Vol. 41, pp. 399-417
- Shamseldin, A.Y. (1997). 'Application of a neural network technique to rainfall-runoff modeling.' J. Hydrol., Vol. 199, pp. 272-294 https://doi.org/10.1016/S0022-1694(96)03330-6
- Swingler, K. (1996). Applying neural networks: A practical guide, Academic Press, CA, 303 pp
- U.S. Army Corps of Engineers (1999). annual flood damage report to congress for fiscal year. http://www.usace.army.mil/inet/functions/cw/cecwe/flood99/