• Title/Summary/Keyword: product manifolds

Search Result 106, Processing Time 0.02 seconds

STATIC AND RELATED CRITICAL SPACES WITH HARMONIC CURVATURE AND THREE RICCI EIGENVALUES

  • Kim, Jongsu
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1435-1449
    • /
    • 2020
  • In this article we make a local classification of n-dimensional Riemannian manifolds (M, g) with harmonic curvature and less than four Ricci eigenvalues which admit a smooth non constant solution f to the following equation $$(1)\hspace{20}{\nabla}df=f(r-{\frac{R}{n-1}}g)+x{\cdot} r+y(R)g,$$ where ∇ is the Levi-Civita connection of g, r is the Ricci tensor of g, x is a constant and y(R) a function of the scalar curvature R. Indeed, we showed that, in a neighborhood V of each point in some open dense subset of M, either (i) or (ii) below holds; (i) (V, g, f + x) is a static space and isometric to a domain in the Riemannian product of an Einstein manifold N and a static space (W, gW, f + x), where gW is a warped product metric of an interval and an Einstein manifold. (ii) (V, g) is isometric to a domain in the warped product of an interval and an Einstein manifold. For the proof we use eigenvalue analysis based on the Codazzi tensor properties of the Ricci tensor.

GENERIC SUBMANIFOLDS OF AN ALMOST CONTACT MANIFOLDS

  • Cho, Eun Jae;Choi, Jin Hyuk;Kim, Byung Hak
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.427-435
    • /
    • 2006
  • In this paper, we are to study the generic submanifold M of a Kenmotsu manifold and consider the integrability condition of the almost complex structure induced on the even-dimensional product manifold $M{\times}R^p{\times}R^1$ where p is the codimension.

  • PDF

THREE-DIMENSIONAL ALMOST KENMOTSU MANIFOLDS WITH η-PARALLEL RICCI TENSOR

  • Wang, Yaning
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.793-805
    • /
    • 2017
  • In this paper, we prove that the Ricci tensor of a three-dimensional almost Kenmotsu manifold satisfying ${\nabla}_{\xi}h=0$, $h{\neq}0$, is ${\eta}$-parallel if and only if the manifold is locally isometric to either the Riemannian product $\mathbb{H}^2(-4){\times}\mathbb{R}$ or a non-unimodular Lie group equipped with a left invariant non-Kenmotsu almost Kenmotsu structure.

PARTIAL DIFFERENTIAL EQUATIONS AND SCALAR CURVATURE ON SEMIRIEMANNIAN MANIFOLDS(I)

  • Jung, Yoon-Tae;Kim, Yun-Jeong;Lee, Soo-Young;Shin, Cheol-Guen
    • The Pure and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.115-122
    • /
    • 1998
  • In this paper, when N is a compact Riemannian manifold, we discuss the method of using warped products to construct timelike or null future(or past) complete Lorentzian metrics on $M{\;}={\;}[a,{\;}{\infty}){\times}_f{\;}N$ with specific scalar curvatures.

  • PDF

LOCALLY SYMMETRIC ALMOST COKÄHLER 5-MANIFOLDS WITH KÄHLERIAN LEAVES

  • Wang, Yaning
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.789-798
    • /
    • 2018
  • Let M be a compact almost $coK{\ddot{a}}hler$ 5-manifold with $K{\ddot{a}}hlerian$ leaves. In this paper, we prove that M is locally symmetric if and only if it is locally isometric to a Riemannian product of a unit circle $S^1$ and a locally symmetric compact $K{\ddot{a}}hler$ 4-manifold.

Conformally flat cosymplectic manifolds

  • Kim, Byung-Hak;Kim, In-Bae
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.4
    • /
    • pp.999-1006
    • /
    • 1997
  • We proved that if a fibred Riemannian space $\tilde{M}$ with cosymplectic structure is conformally flat, then $\tilde{M}$ is the locally product manifold of locally Euclidean spaces, that is locally Euclidean. Moreover, we investigated the fibred Riemannian space with cosymplectic structure when the Riemannian metric $\tilde{g}$ on $\tilde{M}$ is Einstein.

  • PDF

PRODUCTS OF MANIFOLDS AS CONDIMENSION k FINBRATORS

  • Im, Young-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.79-90
    • /
    • 1999
  • In this paper, we show that any product of a closed orientable n-manifold $N_1$ with finite fundamental group and a closed orientable asgerical m-mainfold $N_2$ with hopfian fundamental group, where X($N_1$) and X($N_2$) are nonzero, is a condimension 2 fibrator. Moreover, if <$\pi_i(N_1)$=0 for 1$N_1\timesN_2$ is a codimension k PL fibrator.

  • PDF

LOCALLY PRODUCT INDEFINITE KAEHLERIAN METRICS WITH VANISHING CONFORMAL CURVATURE TENSOR FIELD

  • Kwon, Jung-Hwan;Sohn, Won-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.25-29
    • /
    • 1992
  • The purpose of this paper is to study indefinite Kaehlerian metrics with vanishing conformal curvature tensor field. In the first section, a brief summary of the complex version of indefinite Kaehlerian manifolds is recalled and we introduce the conformal curvature tensor field on an indefinite Kaehlerian manifold. In section 2, we obtain the theorem for indefinite Kaehlerian metrics with vanishing conformal curvature tensor field.

  • PDF

A NULL FOCAL THEOREM ON LORENTZ MANIFOLDS

  • So, Jae-Up
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.273-284
    • /
    • 2001
  • Let P be a spacelike (n-2)-dimensional submanifold of an n-dimensional Lorentz manifold M and let$\sigma$ be a P-normal null geodesic with Ric($\sigma',\sigma'$)$\geq$m, for the any given nonpositive constant m. We establish a sufficient condition such that there is a focal point of P along $\sigma$.

  • PDF

COMPACT MANIFOLDS WITH THE MINIMAL ENTROPY

  • Yim, Jin-Whan
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.2
    • /
    • pp.365-374
    • /
    • 1995
  • On a compact manifold without conjugate points, the volume entropy can be obtained as the average mean curvature of the horospheres in the universal covering space. In the case when the volume entropy is zero, we prove that the universal covering space is diffeomorphic to a product space with a line factor. This fact can be considered as a surporting evidence for the Mane's conjecture, which claims the flatness of the mainfold.

  • PDF