GENERIC SUBMANIFOLDS OF AN ALMOST CONTACT MANIFOLDS

Eun Jae Cho*, Jin Hyuk Choi **, and Byung Hak Kim ***

Abstract

In this paper, we are to study the generic submanifold M of a Kenmotsu manifold and consider the integrability condition of the almost complex structure induced on the even-dimensional product manifold $M \times R^{p} \times R^{1}$ where p is the codimension.

1. Introduction

S. Tanno [4] has classified connected almost contact Riemannian manifolds whose automorphism groups have the maximal dimension into three classes : the one is homogeneous normal contact Riemannian manifolds with $K(X, \xi)>0$, a global Riemannian products of a line or a circle and a Kaehlerian manifold with constant holomorphic sectional curvature if $K(X, \xi)=0$ and a warped product space $L \times{ }_{f} C E^{n}$ if $K(X, \xi)<0$, where $K(X, \xi)$ is the sectional curvature of plane sections containing ξ. It is well known that the first and second cases in the above statements are characterized by some tensor equations and they have Sasakian and cosympletic structures. For the thired case, K. Kenmotsu [2] characterized by tensor equations and studied their properties. Such a structure is normal, but not Sasakian.

On the other hand, many authors have studied the generic (or antiholomorphic) submanifolds of Kaehlerian or Sasakian manifolds.

In this paper, we are to study the generic submanifold M of a Kenmotsu manifold and consider the integrability condition of the almost complex structure induced on the even-dimensional product manifold

[^0]$M \times R^{p} \times R^{1}$, where p is the codimension. Throughout this paper, the range of indices system are as follows:
\[

$$
\begin{aligned}
& A, B, C, D, \cdots: 1,2, \cdots, 2 m+2 \\
& a, b, c, d, \cdots: 1,2, \cdots, n \\
& x, y, z, w, \cdots: n+1, \cdots, n+p=2 m+1 \\
& \quad * \quad: 2 m+2
\end{aligned}
$$
\]

Manifolds, submanifolds, all geometric objects and mappings we discuss in this paper are assumed to be differentiable and of class C^{∞}.

2. Kenmotsu manifold

Let N be an almost contact manifold with an almost contact metric structure (ϕ, ξ, η, g), that is, ϕ is $(1,1)$ tensor, ξ is a vector field, η is a 1 -form and g is a Riemannian metric on X such that

$$
\begin{gather*}
\phi^{2} X=-X+\eta(X) \otimes \xi \tag{2.1}\\
\eta(\xi)=1, \\
\phi(\xi)=0, \\
\xi(\phi X)=0 \\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \\
g(\phi X, Y)=-g(X, \phi Y) \\
g(X, \xi)=\eta(X) \tag{2.7}
\end{gather*}
$$

for any vector fields X and Y on N An almost contact metric manifold
is called Kenmotsu manifold ([2]) if

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=g(\phi X, Y) \xi-\eta(Y) \phi X \tag{2.8}
\end{equation*}
$$

where ∇ is the covariant differentiation with respect to g. It is easily see that

$$
\begin{equation*}
\nabla_{X} \xi=-\phi^{2} X=-X-\eta(X) \xi \tag{2.9}
\end{equation*}
$$

from (2.3) and (2.8)
The fundamental 2-form Φ is defined by $\Phi(X, Y)=g(\Phi X, Y)$ is skew symmetric.

An almost contact structure (ϕ, ξ, η) on N is said to be normal if the almost complex structure J on $N \times R^{1}$ given by

$$
\begin{equation*}
J\left(X, f \frac{d}{d t}\right)=\left(\phi X-f \xi, \eta(X) \frac{d}{d t}\right) \tag{2.10}
\end{equation*}
$$

f being a c^{∞}-function to the condition

$$
T(\phi, \phi)+2 d \eta \otimes \xi=0
$$

where $T(\phi, \phi)$ denotes the Nijenhuis tensor

$$
\begin{equation*}
T(\phi, \phi)(X, Y)=\phi^{2}[X, Y]+[\phi X, \phi Y]-\phi[\phi X, Y]-\phi[X, \phi Y] \tag{2.11}
\end{equation*}
$$

of ϕ
An almost contact metric structure (ϕ, ξ, η, g) on N is said to be
(a) quasi Sasakian $[1,3]$ if Φ is closed and (ϕ, ξ, η) is normal,
(b) cosymplectic $[1,3]$ if Φ and η are closed and (ϕ, ξ, η) is normal,
(c) Sasakian $[1,3]$ if $\Phi=d \eta$ and (ϕ, ξ, η) is normal.

It is well known that [2]
Proposition 2.1. The Kenmotsu manifold is normal but not quasiSasakian and hence not Sasakian.

Let $L(X)$ be the Lie derivative along X, then we see that [2]
Proposition 2.2 On the Kenmotsu manifold,

$$
\begin{aligned}
\left(\nabla_{X} \eta\right)(Y) & =g(X, Y)-\eta(X) \eta(Y) \\
L(\xi) g & =2(g-\eta \otimes \eta) \\
L(\xi) \phi & =0 \\
L(\xi) \eta & =0
\end{aligned}
$$

3. Generic submanifold of a Kenmotsu manifold

Let N be a $(2 m+1)$-dimensional Kenmotsu manifold and M be an n-dimensional generic submanifold of N, that is the normal space of N is transformed into tangent space by ϕ

Let B_{C} and C_{X} be the local basis of the tangent space and normal space of N, then the induced metric on N and normal bundle are given by

$$
g_{c b}=G\left(B_{c}, B_{b}\right),
$$

$$
\bar{g}_{x y}=G\left(C_{x}, C_{y}\right) .
$$

We can put

$$
\begin{gather*}
\phi_{j}{ }^{h} B_{c}{ }^{j}=f_{c}{ }^{a} B_{a}{ }^{h}-f_{c}{ }^{x} C_{x}{ }^{h} \\
\phi_{j}{ }^{h} C_{X}{ }^{j}=f_{x}{ }^{a} B_{a}{ }^{h} \tag{3.1}\\
\xi^{h}=f^{a} B_{a}{ }^{h}+f^{x} C_{x}{ }^{h}
\end{gather*}
$$

where $f_{c}{ }^{a}$ is $(1,1)$ tensor field defined on $N, f_{c}{ }^{x}$ is local 1-form for each fixed index X, f^{a} a vector fired, f^{x} a function for each fixed index X and

$$
f_{X}{ }^{a}=f_{c}{ }^{y} g^{a c} \bar{g}_{y x}
$$

By use of and (3.1)-(3.3), we have

$$
\begin{gather*}
f_{c}{ }^{a} f_{a}{ }^{b}=-\delta_{c}{ }^{b}+f_{c}{ }^{x} f_{x}{ }^{b}+\eta_{c} f^{b} \\
f_{c}{ }^{a} f_{a}{ }^{x}=-\eta_{c} f^{x} \\
f_{x}{ }^{a}{ }^{\prime}{ }_{a}{ }^{b}=f_{x} f^{b} \tag{3.4}\\
f_{x}{ }^{a} f_{a}{ }^{y}=\delta_{x}{ }^{y}-f_{x} f^{y} \\
f^{a} f_{a}{ }^{b}+f^{x} f_{x}{ }^{b}=0 \\
f^{a} f_{a}^{x}=0 \\
f_{a} f^{a}+f_{x} f^{x}=1
\end{gather*}
$$

We easily see that

$$
\begin{equation*}
f_{c b}=-f_{b c} \quad \text { and } \quad f_{a x}=f_{x a} . \tag{3.5}
\end{equation*}
$$

Let $\tilde{\nabla}$ be the operation of the covariant differentiation on M, then the induced connection ∇_{c} on N is given by

$$
\nabla_{c}=B_{c}{ }^{j} \tilde{\nabla}_{j}
$$

and that we have the equations of Gauss and Weingarten for N

$$
\begin{align*}
\nabla_{c} B_{b}{ }^{h} & =h_{c b}{ }^{x} C_{x}{ }^{h}, \tag{3.6}\\
\nabla_{c} C_{x}{ }^{h} & =-h_{c}{ }^{a}{ }_{x} B_{a}{ }^{h} \tag{3.7}
\end{align*}
$$

respectively, where $h=\left(h_{c b}{ }^{x}\right)$ is the second fundamental tensor with respect to C_{x}.
The structure equations of N are given by

$$
\begin{gather*}
R_{a b c d}=K_{k j i h} B_{a}{ }^{k} B_{b}{ }^{j} B_{c}{ }^{i} B_{d}{ }^{h}+h_{a d x} h_{a c}{ }^{x}, \tag{3.8}\\
K_{k j i}{ }^{h} B_{b}{ }^{k} B_{c}{ }^{j} B_{a}{ }^{i} C_{h}{ }^{x}=\nabla_{b} h_{c a}{ }^{x}-\nabla_{c} h_{b a}{ }^{x}, \tag{3.9}\\
K_{k j i}{ }^{h} B_{b}{ }^{k} B_{c}{ }^{j} C_{x}{ }^{i} C_{h}{ }^{x}=R_{b c x}{ }^{y}-\left(h_{b e}{ }^{y} h_{c}{ }^{e}{ }_{x}-h_{c e}{ }^{y} h_{b}{ }^{e}{ }_{x}\right) . \tag{3.10}
\end{gather*}
$$

where $R_{a b c d}$ is the curvature tensor of N and $R_{b c x}{ }^{y}$ the curvature tensor of the connection induced in the normal bundle.

If we apply ∇_{b} to (3.1) and take account of (2.8),(2.9),(3.6) and (3.7), we have

$$
\begin{gather*}
\nabla_{d} f_{c}{ }^{a}=-f_{c} f_{d}{ }^{a}-f^{a} f_{d c}+h_{d c}{ }^{x} f_{x}{ }^{a}-h_{d}{ }^{a}{ }_{x} f_{c}{ }^{x} \\
\nabla_{d} f_{c}{ }^{x}=-f_{c} f_{d}{ }^{x}+f^{x} f_{d c}+h_{d a}{ }^{a} f_{c}{ }^{a} \\
\nabla_{d} f_{x}{ }^{a}=-f_{x} f_{d}{ }^{a}-f^{a} f_{x d}-h_{d}{ }^{b} x f_{b}{ }^{a} \tag{3.11}\\
f_{x}{ }^{a} h_{d a}{ }^{y}=f_{x} f_{d}{ }^{y}-f^{y} f_{x d}+h_{d}{ }^{b} x f_{b}{ }^{y} \\
\nabla_{d} f^{a}=\delta_{d}{ }^{a}-f^{a} f_{d}+f^{x} h_{d}{ }^{a} x \\
\nabla_{d} f^{x}=-f^{x} f_{d}-f^{a} h_{d a}{ }^{x}
\end{gather*}
$$

4. An almost complex structure

Let N be an n -dimensional generic submanifold of the Kenmotsu manifold. Denote the product manifold $N \times R^{p} \times R^{1}$ by M for the $p(=2 m+1-n)$-dimensional Euclidean space R^{p} and define on M a tensor field F of type (1,1) with local components $F_{B}{ }^{A}$ given by

$$
\left(\mathbf{F}_{\mathbf{B}}{ }^{\mathbf{A}}\right)=\left(\begin{array}{ccc}
f_{b}{ }^{a} & -f_{b}{ }^{x} & -f_{b} \\
f_{y}{ }^{a} & 0 & -f_{y} \\
f^{a} & f^{x} & 0
\end{array}\right)
$$

in $\left(M, x^{A}\right),\left(N, x^{a}\right)$ being a coordinate neighborhood of N and

$$
\left(x^{n+1}, \cdots \cdots, x^{n+p}=x^{2 m+1}\right)
$$

being a Cartesian coordinate in R^{p} and $x^{*}=x^{2 m+2}$ a natural coordinate in R^{1}. Then taking account of (3.4), we see that $F^{2}=-I$ holds on M. Thus we have

Proposition 4.1. Let N be a generic submanifold of the Kenmotsu manifolds. Then M is an almost complex manifold.

The Nijenhuis tensor of the almost complex structure F has local components
(4.2) $[F, F]_{C B}{ }^{A}=F_{C}{ }^{E} \partial_{E} F_{B}{ }^{A}-F_{B}{ }^{E} \partial_{E} F_{C}{ }^{A}-\left(\partial_{C} F_{B}{ }^{E}-\partial_{B} F_{C}{ }^{E}\right) F_{E}{ }^{A}$

We denote $[F, F]_{C B}{ }^{A}$ by $N_{C B}{ }^{A}$. Then, by use of (3.1), the nonvanishing components of $N_{C B}{ }^{A}$ are given by
(4.3.3) $N_{c b}{ }^{*}=-f_{c}{ }^{e} \partial_{e} f_{b}+f_{b}{ }^{e} \partial_{e} f_{c}+\left(\partial_{c} f_{b}{ }^{e}-\partial_{b} f_{c}{ }^{e}\right) f_{e}-\left(\partial_{c} f_{b}{ }^{y}-\partial_{b} f_{c}{ }^{y}\right) f_{y}$
(4.3.4) $N_{c y}{ }^{a}=f_{c}{ }^{e} \partial_{e} f_{y}{ }^{a}-f_{b}{ }^{x} \partial_{x} f_{y}{ }^{a}-f_{y}{ }^{e} \partial_{e} f_{c}{ }^{a}-\left(\partial_{c} f_{y}{ }^{e}\right) f_{e}{ }^{a}-\left(\partial_{y} f_{c}{ }^{x}\right) f_{x}{ }^{a}$

$$
\begin{equation*}
N_{c y}{ }^{x}=f_{y}{ }^{e} \partial_{e} f_{c}+\left(\partial_{c} f_{y}{ }^{e}\right) f_{e}{ }^{x} \tag{4.3.5}
\end{equation*}
$$

$$
\begin{align*}
& N_{c y}^{*}=f_{c}{ }^{z} \partial_{z} f_{y}+f_{y}{ }^{e} \partial_{e} f_{c}+\left(\partial_{c} f_{y}{ }^{e}\right) f_{e}-\left(\partial_{y} f_{c}{ }^{z}\right) f_{z} \tag{4.3.6}\\
& N_{c *}{ }^{a}=f_{c}{ }^{e} \partial_{e} f^{a}-f^{e} \partial_{e} f_{c}{ }^{a}-\left(\partial_{c} f^{e}\right) f_{e}^{a}-\left(\partial_{c} f^{z}\right) f_{z}{ }^{a} \tag{4.3.7}
\end{align*}
$$

$$
\begin{equation*}
N_{c *}^{x}=-f_{c}^{z} \partial_{z} f^{x}+f^{e} f^{z} \partial_{z} f_{c}^{x}+\left(\partial_{c} f^{e}\right) f_{e}^{x} \tag{4.3.8}
\end{equation*}
$$

$$
\begin{gather*}
N_{z y}{ }^{a}=f_{z}{ }^{e} \partial_{e} f_{y}{ }^{a}-f_{y}{ }^{e} \partial_{e} f_{z}{ }^{a}-\left(\partial_{z} f_{y}{ }^{e}-\partial_{y} f_{z}{ }^{e}\right) f_{e}{ }^{a} \tag{4.3.10}\\
+\left(\partial_{z} f_{y}-\partial_{y} f_{z}\right) f^{a}
\end{gather*}
$$

$$
\begin{equation*}
N_{z y}^{x}=\left(\partial_{z} f_{y}^{e}-\partial_{y} f_{z}^{e}\right) f_{e}^{x}+\left(\partial_{z} f_{y}-\partial_{y} f_{z}\right) f^{x} \tag{4.3.11}
\end{equation*}
$$

$$
\begin{equation*}
N_{z y}{ }^{*}=\left(\partial_{z} f_{y}{ }^{e}-\partial_{y} f_{z}{ }^{e}\right) f_{e} \tag{4.3.12}
\end{equation*}
$$

$$
\begin{gather*}
N_{z *}^{a}=f_{z}^{e} \partial_{e} f^{a}-f^{e} \partial_{e} f_{z}^{a}-f^{x} \partial_{x} f_{z}^{a}-\left(\partial_{z} f^{x}\right) f_{x}^{a} \tag{4.3.13}\\
N_{z *}^{x}=0 \tag{4.3.14}\\
N_{z *}^{*}=f^{y}\left(\partial_{y} f^{z}\right)-\left(\partial_{z} f^{y}\right) f_{y}
\end{gather*}
$$

The Nijenhuis tensor of F satisfies the condition [5]

$$
\begin{equation*}
N_{C B}^{A} F_{B}^{E}+N_{C B}^{E} F_{E}^{A}=0 \tag{4.4}
\end{equation*}
$$

Substituting (3.1) into (3.18), we obtain

$$
\begin{align*}
& N_{c e}{ }^{a} f_{b}^{e}-N_{c b}{ }^{e} f_{e}^{a}-N_{c y}^{a} f_{b}^{x}+N_{c b}{ }^{y} f_{y}^{a}-N_{c *}^{a} f_{b}+N_{c b}{ }^{*} f^{a}=0 \tag{4.5.1}\\
& N_{c e}{ }^{x} f_{b}^{e}-N_{c y}^{x} f_{b}^{y}-N_{c *}^{x} f_{b}-N_{c b}^{e} f_{e}^{x}+N_{c b}^{*} f^{x}=0 \\
& N_{c e}{ }^{*} f_{b}{ }^{e}-N_{c y}{ }^{*} f_{b}^{y}-N_{c *}{ }^{*} f_{b}-N_{c b}{ }^{y} f_{y}=0 \\
& N_{c e}{ }^{a} f_{y}^{e}-N_{c *}{ }^{a} f_{y}+N_{c y}{ }^{e} f_{e}^{a}+N_{c y}{ }^{z} f_{z}^{a}+N_{c y}{ }^{*} f^{a}=0 \\
& N_{c e}{ }^{x} f_{y}{ }^{e}-N_{c *}{ }^{x} f_{y}-N_{c y}{ }^{e} f_{e}{ }^{x}+N_{c y}{ }^{*} f^{x}=0 \\
& N_{c e}{ }^{*} f_{y}{ }^{e}-N_{c *}{ }^{*} f_{y}-N_{c y}{ }^{e} f_{e}-N_{c y}{ }^{z} f_{z}=0 \\
& N_{c e}{ }^{a} f^{e}+N_{c y}{ }^{a} f^{y}+N_{c *}{ }^{e} f_{e}{ }^{a}+N_{c *}{ }^{y} f_{y}{ }^{a}+N_{c *}{ }^{*} f^{a}=0 \\
& N_{c e}{ }^{x} f^{e}+N_{c y}{ }^{x} f^{y}-N_{c *}{ }^{e} f_{e}^{x}+N_{c *}{ }^{*} f^{x}=0 \\
& N_{c e}{ }^{*} f^{e}+N_{c y}{ }^{*} f^{y}-N_{c *}{ }^{e} f_{e}-N_{c *}{ }^{y} f_{y}=0 \\
& \text { (4.5.10) } N_{z e}{ }^{a} f_{b}^{e}-N_{z y}^{a} f_{b}^{y}-N_{z *}^{a} f_{b}+N_{z b}{ }^{e} f_{e}^{a}+N_{z b}{ }^{y} f_{y}^{a}+N_{z b}{ }^{*} f^{a}=0 \\
& N_{z e}{ }^{x} f_{b}{ }^{e}-N_{z y}{ }^{x} f_{b}{ }^{y}-N_{z *}{ }^{x} f_{b}-N_{z b}{ }^{e} f_{e}{ }^{x}+N_{z b}{ }^{*} f^{x}=0 \tag{4.5.11}\\
& N_{z e}{ }^{*} f_{b}{ }^{e}-N_{z y}{ }^{*} f_{b}{ }^{y}-N_{z *}{ }^{*} f_{b}-N_{z b}{ }^{e} f_{e}-N_{z b}{ }^{y} f_{y}=0 \tag{4.5.12}\\
& N_{z e}{ }^{a} f_{y}{ }^{e}-N_{z *}{ }^{a} f_{y}+N_{z y}{ }^{e} f_{w}{ }^{a}+N_{z y}{ }^{*} f^{a}=0 \tag{4.5.13}\\
& N_{z e}{ }^{x} f_{y}{ }^{e}-N_{z *}{ }^{x} f_{y}-N_{z y}{ }^{e} f_{e}^{x}+N_{z y}{ }^{*} f^{x}=0 \tag{4.5.14}\\
& N_{z e}{ }^{a} f^{e}+N_{z y}{ }^{a} f^{y}+N_{z *}{ }^{e} f_{y}{ }^{a}+N_{z *}{ }^{*} f^{a}=0 \tag{4.5.15}
\end{align*}
$$

$$
\begin{gather*}
N_{z e}{ }^{x} f^{e}+N_{z y}{ }^{x} f^{y}-N_{z *}{ }^{e} f_{e}{ }^{x}+N_{z *}{ }^{*} f^{x}=0 \tag{4.5.16}\\
N_{z e}{ }^{*} f^{e}+N_{z y}{ }^{*} f^{y}-N_{z *}{ }^{e} f_{e}-N_{z *}^{y} f_{y}=0 \tag{4.5.17}\\
N_{z e}{ }^{*} f^{e}+N_{z y}{ }^{*} f^{y}-N_{z *}{ }^{e} f_{e}-N_{z *}{ }^{y} f_{y}=0 \tag{4.5.18}\\
N_{* e}{ }^{a} f_{b}{ }^{e}-N_{* y}{ }^{a} f_{b}^{y}+N_{* b}{ }^{e} f_{e}^{a}+N_{* b}{ }^{y} f_{y}^{a}+N_{* b}{ }^{*} f^{a}=0 \tag{4.5.19}\\
N_{* e}{ }^{x} f_{b}{ }^{e}-N_{* y}{ }^{x} f_{b}^{y}-N_{* b}^{e} f_{e}{ }^{x}=0 \tag{4.5.20}\\
N_{* e}{ }^{*} f_{b}{ }^{e}-N_{* y}{ }^{*} f_{b}^{y}-N_{* b}^{e} f_{e}-N_{* b}^{y} f_{y}=0 \tag{4.5.21}\\
N_{* e}{ }^{a} f_{y}^{e}+N_{* x}{ }^{e} f_{e}{ }^{a}+N_{* y}^{z} f_{z}^{a}+N_{* y}{ }^{*} f^{a}=0 \tag{4.5.22}\\
N_{* e}{ }^{x} f_{y}^{e}-N_{* y}^{e} f_{e}{ }^{x}+N_{* y}{ }^{*} f^{x}=0 \tag{4.5.23}\\
N_{* e}{ }^{*} f_{y}{ }^{e}-N_{* y}{ }^{e} f_{e}-N_{* y}{ }^{z} f_{z}=0 \tag{4.5.24}\\
N_{* e}{ }^{a} f^{e}+N_{* y}{ }^{a} f^{y}=0 \tag{4.5.25}\\
N_{* e}{ }^{x} f^{e}+N_{* y}{ }^{x} f^{y}=0 \tag{4.5.26}\\
N_{* e}{ }^{*} f^{e}+N_{* y}{ }^{*} f^{y}=0 \tag{4.5.27}
\end{gather*}
$$

Assume that $N_{c b}{ }^{a}=0, N_{c b}{ }^{x}=0, N_{c b}^{*}=0$. Then the equation (4.5.1) is reduced to

$$
\begin{equation*}
N_{c y}{ }^{a} f_{b}^{y}+N_{c *}{ }^{a} f_{b}=0 \tag{4.6}
\end{equation*}
$$

Transvecting f^{b}, we obtain $N_{c *}^{a}=0$ if $\lambda\left(1-\lambda^{2}\right) \neq 0$ almost every where for $\lambda^{2}=f_{x} f^{x}$. This fact (3.1) and (4.6), we easily see that $N_{c z}{ }^{a}=0$.

By the same methord, we get $N_{c *}{ }^{x}=0$ and $N_{c z}{ }^{x}=0$ from (4.5.2). Moreover we see that $N_{c *}{ }^{*}=0, N_{c z}{ }^{*}=0$ from (4.5.3) and $N_{z *}{ }^{a}=0$ and $N_{z y}{ }^{a}=0$ from (4.5.10) and $N_{z *}{ }^{x}=0$ and $N_{z y}^{x}=0$ from(4.5.11) and $N_{z y}{ }^{*}=0$ and $N_{z *}{ }^{*}=0$ from (4.5.12) and finally we have $N_{z y}{ }^{x}=0$ from (4.5.13).

Hence we can state Theorem 4.1 Let N be a generic submanifold of Kenmotsu manifolds. If the components $N_{c b}{ }^{a}=0, N_{c b}{ }^{x}=0$ and $N_{c b}{ }^{*}=0$ and $\lambda\left(1-\lambda^{2}\right) \neq 0$ a.e, then all components of the Nijenhuis tensor all vanish

It is well Known that [5] the necessary and sufficient condition an almost complex structure F to be integrable is the components of N formed by F are all vanish. Thus we have

Theorem 4.2. Let N be a generic submanifold of Kenmotsu manifolds. Then the almoat complex structure F is integrable if and only if the components $N_{c b}{ }^{a}=0, N_{c b}{ }^{x}=0$ and $N_{c b}{ }^{*}=0$ and $\lambda\left(1-\lambda^{2}\right) \neq 0$ a.e.

References

[1] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Birkauser. (2001).
[2] K. Kenmotsu, A class of almost contact Riemannain manifols, Tohoku Math.J. 24 (1972), 93-103.
[3] B. H. Kim, Fibred Riemannian spaces with quasi Sasakian structure, Hiroshima Math.J. 20 (1990), 477-513
[4] S. Tanno, The automorphism groups of almost contact Riemannian manifold, Tohoku Math. J. 21 (1969), 21-38
[5] K. Yano, Differential geometry of complex and almost complex spaces, Pergamon Press, New York, (1965).

Department of Mathematics
Kyung Hee University
Suwon 446-701, Republic of Korea
E-mail: nicegirlisyou@khu.ac.kr
**
College of Liberal Arts
Kyung Hee University
Suwon 446-701, Republic of Korea
E-mail: jinhchoi@khu.ac.kr

Department of Mathematics
Kyung Hee University
Suwon 446-701, Republic of Korea
E-mail: bhkim@khu.ac.kr

[^0]: Received December 5, 2006.
 2000 Mathematics Subject Classification: Primary 53B20, 53B35.
 Key words and phrases: almost contact manifold, integrability condition, Kenmotsu manifold.

 The first and second named authors were partially supported by Korea Science and Engineering Foundation Grant(R05-2004-000-11588), while the third named author was supported by grant Proj. No R14-2002-003-01002-0 from Korea Research Foundation.

