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GENERIC SUBMANIFOLDS OF AN ALMOST
CONTACT MANIFOLDS

Eun Jae Cho*, Jin Hyuk Choi **, and Byung Hak Kim ***

Abstract. In this paper, we are to study the generic submanifold
M of a Kenmotsu manifold and consider the integrability condition
of the almost complex structure induced on the even-dimensional
product manifold M ×Rp ×R1 where p is the codimension.

1. Introduction

S. Tanno [4] has classified connected almost contact Riemannian man-
ifolds whose automorphism groups have the maximal dimension into
three classes : the one is homogeneous normal contact Riemannian
manifolds with K(X, ξ) > 0, a global Riemannian products of a line
or a circle and a Kaehlerian manifold with constant holomorphic sec-
tional curvature if K(X, ξ) = 0 and a warped product space L×f CEn

if K(X, ξ) < 0, where K(X, ξ) is the sectional curvature of plane sec-
tions containing ξ. It is well known that the first and second cases in the
above statements are characterized by some tensor equations and they
have Sasakian and cosympletic structures. For the thired case, K. Ken-
motsu [2] characterized by tensor equations and studied their properties.
Such a structure is normal, but not Sasakian.

On the other hand, many authors have studied the generic (or anti-
holomorphic) submanifolds of Kaehlerian or Sasakian manifolds.

In this paper, we are to study the generic submanifold M of a Ken-
motsu manifold and consider the integrability condition of the almost
complex structure induced on the even-dimensional product manifold
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M ×Rp ×R1, where p is the codimension. Throughout this paper, the
range of indices system are as follows:

A,B, C,D, · · · : 1, 2, · · · , 2m + 2,
a, b, c, d, · · · : 1, 2, · · · , n,
x, y, z, w, · · · : n + 1, · · · , n + p = 2m + 1,

∗ : 2m + 2

Manifolds, submanifolds, all geometric objects and mappings we dis-
cuss in this paper are assumed to be differentiable and of class C∞.

2. Kenmotsu manifold

Let N be an almost contact manifold with an almost contact metric
structure (φ, ξ, η, g), that is, φ is (1,1) tensor, ξ is a vector field, η is a
1-form and g is a Riemannian metric on X such that

(2.1) φ2X = −X + η(X)⊗ ξ,

(2.2) η(ξ) = 1,

(2.3) φ(ξ) = 0,

(2.4) ξ(φX) = 0,

(2.5) g(φX, φY ) = g(X, Y )− η(X)η(Y ),

(2.6) g(φX, Y ) = −g(X, φY ),

(2.7) g(X, ξ) = η(X)

for any vector fields X and Y on N An almost contact metric manifold

is called Kenmotsu manifold ([2]) if

(2.8) (∇Xφ)Y = g(φX, Y )ξ − η(Y )φX,

where ∇ is the covariant differentiation with respect to g. It is easily
see that

(2.9) ∇Xξ = −φ2X = −X − η(X)ξ

from (2.3) and (2.8)

The fundamental 2-form Φ is defined by Φ(X, Y ) = g(ΦX, Y ) is skew
symmetric.
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An almost contact structure (φ, ξ, η) on N is said to be normal if the
almost complex structure J on N ×R1 given by

(2.10) J(X, f
d

dt
) = (φX − fξ, η(X)

d

dt
),

f being a c∞-function to the condition

T (φ, φ) + 2dη ⊗ ξ = 0,

where T (φ, φ) denotes the Nijenhuis tensor

(2.11) T (φ, φ)(X, Y ) = φ2[X, Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ]

of φ

An almost contact metric structure (φ, ξ, η, g) on N is said to be
(a) quasi Sasakian [1,3] if Φ is closed and (φ, ξ, η) is normal,
(b) cosymplectic [1,3] if Φ and η are closed and (φ, ξ, η) is normal,
(c) Sasakian [1,3] if Φ = dη and (φ, ξ, η) is normal.

It is well known that [2]

Proposition 2.1. The Kenmotsu manifold is normal but not quasi-
Sasakian and hence not Sasakian.

Let L(X) be the Lie derivative along X , then we see that [2]

Proposition 2.2 On the Kenmotsu manifold,
(∇Xη)(Y ) = g(X, Y )− η(X)η(Y )

L(ξ)g = 2(g − η ⊗ η)

L(ξ)φ = 0

L(ξ)η = 0

3. Generic submanifold of a Kenmotsu manifold

Let N be a (2m + 1)-dimensional Kenmotsu manifold and M be an
n-dimensional generic submanifold of N , that is the normal space of N
is transformed into tangent space by φ

Let BC and CX be the local basis of the tangent space and normal
space of N , then the induced metric on N and normal bundle are given
by

gcb = G(Bc, Bb),
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ḡxy = G(Cx, Cy).
We can put

φj
hBc

j = fc
aBa

h − fc
xCx

h

(3.1) φj
hCX

j = fx
aBa

h

ξh = faBa
h + fxCx

h

where fc
a is (1,1)tensor field defined on N , fc

x is local 1-form for each

fixed index X, fa a vector fired, fx a function for each fixed index X
and

fX
a = fc

ygacḡyx

By use of and (3.1)-(3.3), we have

fc
afa

b = −δc
b + fc

xfx
b + ηcf

b

fc
afa

x = −ηcf
x

(3.4) fx
afa

b = fxf b

fx
afa

y = δx
y − fxfy

fafa
b + fxfx

b = 0
fafa

x = 0
faf

a + fxfx = 1
We easily see that

(3.5) fcb = −fbc and fax = fxa.

Let ∇̃ be the operation of the covariant differentiation on M , then
the induced connection ∇c on N is given by

∇c = Bc
j∇̃j

and that we have the equations of Gauss and Weingarten for N

(3.6) ∇cBb
h = hcb

xCx
h,

(3.7) ∇cCx
h = −hc

a
xBa

h

respectively, where h = (hcb
x) is the second fundamental tensor with

respect to Cx.
The structure equations of N are given by
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(3.8) Rabcd = KkjihBa
kBb

jBc
iBd

h + hadxhac
x,

(3.9) Kkji
hBb

kBc
jBa

iCh
x = ∇bhca

x −∇chba
x,

(3.10) Kkji
hBb

kBc
jCx

iCh
x = Rbcx

y − (hbe
yhc

e
x − hce

yhb
e
x).

where Rabcd is the curvature tensor of N and Rbcx
y the curvature tensor

of the connection induced in the normal bundle.
If we apply ∇b to (3.1) and take account of (2.8),(2.9),(3.6) and (3.7),

we have
∇dfc

a = −fcfd
a − fafdc + hdc

xfx
a − hd

a
xfc

x

∇dfc
x = −fcfd

x + fxfdc + hda
xfc

a

(3.11) ∇dfx
a = −fxfd

a − fafxd − hd
bxfb

a

fx
ahda

y = fxfd
y − fyfxd + hd

bxfb
y

∇df
a = δd

a − fafd + fxhd
ax

∇df
x = −fxfd − fahda

x

4. An almost complex structure

Let N be an n-dimensional generic submanifold of the Kenmotsu
manifold. Denote the product manifold N × Rp × R1 by M for the
p(= 2m + 1 − n)-dimensional Euclidean space Rp and define on M a
tensor field F of type (1,1) with local components FB

A given by

(4.1) (FB
A) =




fb
a −fb

x −fb

fy
a 0 −fy

fa fx 0




in (M, xA) , (N,xa) being a coordinate neighborhood of N and

(xn+1, · · · · · · , xn+p = x2m+1)

being a Cartesian coordinate in Rp and x∗ = x2m+2 a natural coordinate
in R1. Then taking account of (3.4), we see that F 2 = −I holds on M .
Thus we have

Proposition 4.1. Let N be a generic submanifold of the Kenmotsu
manifolds. Then M is an almost complex manifold.

The Nijenhuis tensor of the almost complex structure F has local
components

(4.2) [F, F ]CB
A = FC

E∂EFB
A−FB

E∂EFC
A− (∂CFB

E − ∂BFC
E)FE

A
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We denote [F, F ]CB
A by NCB

A. Then, by use of (3.1), the non-
vanishing components of NCB

A are given by

(4.3.1) Ncb
a = fc

e∂efb
a − fb

e∂efc
a − (∂cfb

e − ∂bfc
e)fe

a

+(∂cfb
x − ∂bfc

x)fx
a + (∂cfb − ∂bfc)fa

(4.3.2) Ncb
x = −fc

e∂efb
x + fc

y∂yfb
x + fb

e∂efc
x − fb

y∂yfc
x

+(∂cfb
e − ∂bfc

e)fe
x + (∂cfb − ∂bfc)fx

(4.3.3) Ncb
∗ = −fc

e∂efb +fb
e∂efc +(∂cfb

e−∂bfc
e)fe−(∂cfb

y−∂bfc
y)fy

(4.3.4) Ncy
a = fc

e∂efy
a−fb

x∂xfy
a−fy

e∂efc
a−(∂cfy

e)fe
a−(∂yfc

x)fx
a

(4.3.5) Ncy
x = fy

e∂efc + (∂cfy
e)fe

x

(4.3.6) Ncy
∗ = fc

z∂zfy + fy
e∂efc + (∂cfy

e)fe − (∂yfc
z)fz

(4.3.7) Nc∗a = fc
e∂ef

a − fe∂efc
a − (∂cf

e)fe
a − (∂cf

z)fz
a

(4.3.8) Nc∗x = −fc
z∂zf

x + fefz∂zfc
x + (∂cf

e)fe
x

(4.3.9) Nc∗∗ = fe∂efc + (∂cf
e)fe

(4.3.10) Nzy
a = fz

e∂efy
a − fy

e∂efz
a − (∂zfy

e − ∂yfz
e)fe

a

+(∂zfy − ∂yfz)fa

(4.3.11) Nzy
x = (∂zfy

e − ∂yfz
e)fe

x + (∂zfy − ∂yfz)fx

(4.3.12) Nzy
∗ = (∂zfy

e − ∂yfz
e)fe
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(4.3.13) Nz∗a = fz
e∂ef

a − fe∂efz
a − fx∂xfz

a − (∂zf
x)fx

a

(4.3.14) Nz∗x = 0

(4.3.15) Nz∗∗ = fy(∂yf
z)− (∂zf

y)fy

The Nijenhuis tensor of F satisfies the condition [5]

(4.4) NCB
AFB

E + NCB
EFE

A = 0

Substituting (3.1) into (3.18), we obtain

(4.5.1) Nce
afb

e −Ncb
efa

e −Ncy
afx

b + Ncb
yfy

a −Nc∗afb + Ncb
∗fa = 0

(4.5.2) Nce
xfb

e −Ncy
xfy

b −Nc∗xfb −Ncb
efe

x + Ncb
∗fx = 0

(4.5.3) Nce
∗fb

e −Ncy
∗fy

b −Nc∗∗fb −Ncb
yfy = 0

(4.5.4) Nce
afy

e −Nc∗afy + Ncy
efa

e + Ncy
zfz

a + Ncy
∗fa = 0

(4.5.5) Nce
xfy

e −Nc∗xfy −Ncy
efe

x + Ncy
∗fx = 0

(4.5.6) Nce
∗fy

e −Nc∗∗fy −Ncy
efe −Ncy

zfz = 0

(4.5.7) Nce
afe + Ncy

afy + Nc∗efe
a + Nc∗yfy

a + Nc∗∗fa = 0

(4.5.8) Nce
xfe + Ncy

xfy −Nc∗efe
x + Nc∗∗fx = 0

(4.5.9) Nce
∗fe + Ncy

∗fy −Nc∗efe −Nc∗yfy = 0

(4.5.10) Nze
afb

e−Nzy
afy

b −Nz∗afb + Nzb
efe

a + Nzb
yfy

a + Nzb
∗fa = 0

(4.5.11) Nze
xfb

e −Nzy
xfb

y −Nz∗xfb −Nzb
efe

x + Nzb
∗fx = 0

(4.5.12) Nze
∗fb

e −Nzy
∗fb

y −Nz∗∗fb −Nzb
efe −Nzb

yfy = 0

(4.5.13) Nze
afy

e −Nz∗afy + Nzy
efw

a + Nzy
∗fa = 0

(4.5.14) Nze
xfy

e −Nz∗xfy −Nzy
efx

e + Nzy
∗fx = 0

(4.5.15) Nze
afe + Nzy

afy + Nz∗efy
a + Nz∗∗fa = 0
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(4.5.16) Nze
xfe + Nzy

xfy −Nz∗efe
x + Nz∗∗fx = 0

(4.5.17) Nze
∗fe + Nzy

∗fy −Nz∗efe −Nz∗yfy = 0

(4.5.18) Nze
∗fe + Nzy

∗fy −Nz∗efe −Nz∗yfy = 0

(4.5.19) N∗eafb
e −N∗yafb

y + N∗befa
e + N∗byfy

a + N∗b∗fa = 0

(4.5.20) N∗exfb
e −N∗yxfy

b −N∗befe
x = 0

(4.5.21) N∗e∗fb
e −N∗y∗f

y
b −N∗befe −N∗byfy = 0

(4.5.22) N∗eafy
e + N∗xefe

a + N∗yzfz
a + N∗y∗fa = 0

(4.5.23) N∗exfy
e −N∗yefe

x + N∗y∗fx = 0

(4.5.24) N∗e∗fy
e −N∗yefe −N∗yzfz = 0

(4.5.25) N∗eafe + N∗yafy = 0

(4.5.26) N∗exfe + N∗yxfy = 0

(4.5.27) N∗e∗fe + N∗y∗fy = 0

Assume that Ncb
a = 0, Ncb

x = 0, Ncb
∗ = 0. Then the equation (4.5.1)

is reduced to

(4.6) Ncy
afb

y + Nc∗afb = 0

Transvecting f b, we obtain Nc∗a = 0 if λ(1−λ2) 6= 0 almost every where

for λ2 = fxfx. This fact (3.1) and (4.6), we easily see that Ncz
a = 0.

By the same methord, we get Nc∗x = 0 and Ncz
x = 0 from (4.5.2).

Moreover we see that Nc∗∗ = 0, Ncz
∗ = 0 from (4.5.3) and Nz∗a = 0 and

Nzy
a = 0 from (4.5.10) and Nz∗x = 0 and Nzy

x = 0 from(4.5.11) and
Nzy

∗ = 0 and Nz∗∗ = 0 from (4.5.12) and finally we have Nzy
x = 0 from

(4.5.13).
Hence we can state Theorem 4.1 Let N be a generic submanifold

of Kenmotsu manifolds. If the components Ncb
a = 0, Ncb

x = 0 and
Ncb

∗ = 0 and λ(1 − λ2) 6= 0 a.e, then all components of the Nijenhuis
tensor all vanish

It is well Known that [5] the necessary and sufficient condition an
almost complex structure F to be integrable is the components of N
formed by F are all vanish. Thus we have
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Theorem 4.2. Let N be a generic submanifold of Kenmotsu mani-
folds. Then the almoat complex structure F is integrable if and only if
the components Ncb

a = 0, Ncb
x = 0 and Ncb

∗ = 0 and λ(1−λ2) 6= 0 a.e.
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