• Title/Summary/Keyword: product manifolds

Search Result 106, Processing Time 0.02 seconds

CONTACT CR-WARPED PRODUCT SUBMANIFOLDS IN KENMOTSU SPACE FORMS

  • ARSLAN, KADRI;EZENTAS, RIDVAN;MIHAl, ION;MURATHAN, CENGIZHAN
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.5
    • /
    • pp.1101-1110
    • /
    • 2005
  • Recently, Chen studied warped products which are CR-submanifolds in Kaehler manifolds and established general sharp inequalities for CR-warped products in Kaehler manifolds. In the present paper, we obtain sharp estimates for the squared norm of the second fundamental form (an extrinsic invariant) in terms of the warping function for contact CR-warped products isometrically immersed in Kenmotsu space forms. The equality case is considered. Some applications are derived.

WEAKLY LAGRANGIAN EMBEDDING $S^m\;{\times}\;S^n$ INTO $C^{m+n}$

  • Byun, Yang-Hyun;Yi, Seung-Hun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.799-808
    • /
    • 1999
  • We investigate when the .product of two smooth manifolds admits a weakly Lagrangian embedding. Assume M, N are oriented smooth manifolds of dimension m and n,. respectively, which admit weakly Lagrangian immersions into $C^m$ and $C^n$. If m and n are odd, then $M\;{\times}\;N$ admits a weakly Lagrangian embedding into $C^{m+n}$ In the case when m is odd and n is even, we assume further that $\chi$(N) is an even integer. Then $M\;{\times}\;N$ admits a weakly Lagrangian embedding into $C^{m+n}$. As a corollary, we obtain the result that $S^n_1\;{\times}\;S^n_2\;{\times}\;...{\times}\;S^n_k$, $\kappa$>1, admits a weakly Lagrang.ian embedding into $C^n_1+^n_2+...+^n_k$ if and only if some ni is odd.

  • PDF

QUASI HEMI-SLANT SUBMANIFOLDS OF KAEHLER MANIFOLDS

  • Prasad, Rajendra;Shukla, S.S.;Haseeb, Abdul;Kumar, Sumeet
    • Honam Mathematical Journal
    • /
    • v.42 no.4
    • /
    • pp.795-809
    • /
    • 2020
  • In the present paper, we introduce the notion of quasi hemi-slant submanifolds of almost Hermitian manifolds and give some of its examples. We obtain the necessary and sufficient conditions for the distributions to be integrable. We also investigate the necessary and sufficient conditions for these submanifolds to be totally geodesic and study the geometry of foliations determined by the distributions. Finally, we obtain the necessary and sufficient condition for a quasi hemi-slant submanifold to be local product of Riemannian manifold.

Contact CR-Warped product Submanifolds in Cosymplectic Manifolds

  • Atceken, Mehmet
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.965-977
    • /
    • 2016
  • The aim of this paper is to study the geometry of contact CR-warped product submanifolds in a cosymplectic manifold. We search several fundamental properties of contact CR-warped product submanifolds in a cosymplectic manifold. We also give necessary and sufficient conditions for a submanifold in a cosymplectic manifold to be contact CR-(warped) product submanifold. After then we establish a general inequality between the warping function and the second fundamental for a contact CR-warped product submanifold in a cosymplectic manifold and consider contact CR-warped product submanifold in a cosymplectic manifold which satisfy the equality case of the inequality and some new results are obtained.

GENERIC LIGHTLIKE SUBMANIFOLDS OF SEMI-RIEMANNIAN PRODUCT MANIFOLDS

  • Nand Kishor Jha;Jatinder Kaur;Sangeet Kumar;Megha Pruthi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.847-863
    • /
    • 2023
  • We introduce the study of generic lightlike submanifolds of a semi-Riemannian product manifold. We establish a characterization theorem for the induced connection on a generic lightlike submanifold to be a metric connection. We also find some conditions for the integrability of the distributions associated with generic lightlike submanifolds and discuss the geometry of foliations. Then we search for some results enabling a generic lightlike submanifold of a semi-Riemannian product manifold to be a generic lightlike product manifold. Finally, we examine minimal generic lightlike submanifolds of a semi-Riemannian product manifold.

A NOTE ON THE EIGENFUNCTIONS OF THE LAPLACIAN FOR A TWISTED HOLOMORPHIC PRODUCT

  • Peter B.Gilkey;Park, Jeong-Hyeong
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.325-332
    • /
    • 1997
  • Let $Z = X \times Y$ where X and Y are complex manifolds. We suppose that projection $\pi$ on the second factor is a Riemannian submersion, that TX is perpendicular to TY, and that the metrics on Z and on Y are Hermetian; we do not assume Z is a Riemannian product. We study when the pull-back of an eigenfunction of the complex Laplacian on Y is an eigenfunction of the complex Laplacian on Z.

  • PDF