TUBE FORMULAS IN PRODUCT RIEMANNIAN MANIFOLDS II

SUNGYUN LEE, KI HYOUNG KO, U JIN CHOI AND DO YOUNG KWAK

1. Introduction

Let $P \subset M$ denote that P is a compact p-dimensional embedded submanifold of an m-dimensional Riemannian manifold M. Denote by $V_P^M(r)$ the m-dimensional volume of the tube T(P,r) of radius r about P and by $A_P^M(r)$ the (m-1)-dimensional volume of the boundary of T(P,r). It is well-known that for small r>0

$$\int_0^r A_P{}^{\mathsf{M}}(r) dr = V_P{}^{\mathsf{M}}(r).$$

Throughout this paper we assume that all manifolds are of class C^{ω} . In [3], the first author proved the following theorem.

THEOREM 1. Let $P \subset M$ and $Q \subset N$ so that $P \times Q \subset M \times N$, where \times denotes the Riemannian product. Then we have

$$\widetilde{A}_{P\times Q}^{M\times N}(s) = \widetilde{A}_{P}^{M}(s)\widetilde{A}_{Q}^{N}(s), \tag{1}$$

where

$$\widetilde{A}_{P}^{M}(s) = \int_{0}^{\infty} e^{-s^{2}t^{2}} A_{P}^{M}(t) dt.$$
 (2)

In this article, applying this theorem and Weyl's tube formula [5], we derive a product formula in Euclidean space. We also give a new derivation of the Nijenhuis formula [4]. To be more specific let

$$V_{P}^{M}(r) = \frac{(\pi r^{2})^{(m-p)/2}}{\Gamma((m-p+2)/2)} \sum_{i=0}^{\infty} (\int_{P} a_{2i} dP) r^{2i}$$
(3)

for sufficiently small r>0 (see Remark (1)). Here $(\pi r^2)^k/\Gamma((k+2)/2)$

Received December 5, 1987,

94

is the volume of a ball of radius r in R^k , and dP is the volume element of P. Similarly expand $V_q^N(r)$ and $V_{p\times q}^{M\times N}(r)$ as power series in r:

$$V_{q}^{N}(r) = \frac{(\pi r^{2})^{(n-q)/2}}{\Gamma((n-q+2)/2)} \sum_{j=0}^{\infty} (\int_{q} b_{2j} dQ) r^{2j}, \tag{4}$$

$$V_{P\times Q}^{M\times N}(r) = \frac{(\pi r^2)^{(m+n-p-q)/2}}{\Gamma((m+n-p-q+2)/2)} \sum_{k=0}^{\infty} (\int_{P\times Q} c_{2k} d(P\times Q) r^{2k}.$$
 (5)

Then we have the following product formulas for coefficients.

THEOREM 2. For $k \ge 0$, we have

$$\frac{1}{m+n-p-q} (m+n-p-q) (m+n-p-q+2) \cdots (m+n-p-q+2k)
\times \int_{P\times q} c_{2k} d(P\times Q) = \sum_{i=0}^{k} \frac{1}{m-p} (m-p) (m-p+2) \cdots (m-p+2i)
\times \frac{1}{n-q} (n-q) (n-q+2) \cdots (n-q+2k-2i)
\times (\int_{P} a_{2i} dP) (\int_{Q} (b_{2k-2i} dQ)).$$
(6)

If $P \subset \mathbb{R}^m$, then Weyl's tube formula [5] says that

$$V_{p}^{R^{n}}(r) = \frac{(\pi r^{2})^{(m-p)/2}}{\Gamma((m-p+2)/2)} \times \sum_{c=0}^{(p/2)} \frac{(m-p)k_{2c}(P)r^{2c}}{(m-p)(m-p+2)\cdots(m-p+2c)}, \qquad (7)$$

where $k_{2c}(P)$ is the integral over P of the curvature invariant H_{2c} which is given by

$$H_{2c} = \frac{1}{4^{c}c!} \sum \delta \begin{pmatrix} \alpha \\ \beta \end{pmatrix} R^{P}_{\alpha_{1}\alpha_{2}\beta_{1}\beta_{2}} \cdots R^{P}_{\alpha_{2c-1}\alpha_{2c}\beta_{2c-1}\beta_{2c}}.$$

Here R_{abcd}^{p} is the component of the curvature tensor R^{p} of P, $0 \le 2c \le p$, $\delta \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ is equal to 1 or -1 according as $\alpha_1, \dots, \alpha_{2c}$ are distinct and an even or odd permutation of $\beta_1, \dots, \beta_{2c}$, and otherwise $\delta \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ is zero. The summation is taken over all α 's and β 's running from 1 to β .

Combining the formulas (6) and (7) we obtain the following Nijenhuis formula.

THEOREM 3([4]). Let $P \subset M$ and $Q \subset N$ so that $P \times Q \subset M \times N$. Then we have for $0 \le 2c \le p+q$

$$k_{2c}(P \times Q) = \sum_{i=0}^{c} k_{2i}(P) k_{2i-2i}(Q).$$
 (8)

The Nijenhuis formula (8) and Weyl's formula (7), then, give the following product formula in Euclidean space.

THEOREM 4. Let $P \subset \mathbb{R}^m$ and $Q \subset \mathbb{R}^n$ so that $P \times Q \subset \mathbb{R}^m \times \mathbb{R}^n$. Then we have

$$A_{P\times Q}^{R^{\bullet}\times R^{\bullet}}(r)$$

$$= \sum_{i=0}^{\lfloor p/2 \rfloor} \sum_{j=0}^{\lfloor q/2 \rfloor} \frac{\pi^{(m+n-p-q)/2} k_{2i}(P) k_{2j}(Q)}{2^{i+j-1} \Gamma((m+n-p-q+2i+2j)/2)} r^{(m+n-p-q+2i+2j-1)}$$
(9)

and

$$V_{P imes Q}^{R^* imes R^*}(r)$$

$$= \sum_{i=0}^{\lfloor p/2 \rfloor} \sum_{j=0}^{\lfloor q/2 \rfloor} \frac{\pi^{(m+n-p-q)/2} k_{2i}(P) k_{2j}(Q)}{2^{i+j} \Gamma((m+n-p-q+2i+2j+2)/2)} r^{(m+n-p-q+2i+2j)}. \quad (10)$$

Remarks. (1) The first two terms in the power series for $V_P^{M}(r)$ are given by ([2])

$$\begin{split} &a_0 \! = \! 1, \text{ and} \\ &a_2 \! = \! \frac{1}{2(m \! - \! p \! + \! 2)} \, (\sum_{a_j b = 1}^p (R_{abab}^P \! - \! R_{abab}^M) \\ &- \! \sum_{a = 1}^p \, \sum_{i = p + 1}^m \! R_{aiai}^M \! - \! \sum_{i,j = p + 1}^m \! R_{ijij}^M), \end{split}$$

where R^P and R^M are the curvature tensors of P and Q respectively.

- (2) Since $a_0=b_0=c_0$ in (6), the case k=0 implies the trivial relation volume of $P\times Q=$ volume of $P\times$ volume of Q.
- (3) Theorem [2] is a generalization of a result by Gray (the formula

Sungyun Lee, Ki Hyoung Ko, U Jin Choi and Do Young Kwak

(8) in [1, p. 66]).

96

2. Proofs of Theorems

Proof of Theorem 2. From (2) and (3) we find

$$\widetilde{A}_{p}^{M}(s) = \frac{\pi^{(m-p)/2}}{\Gamma((m-p+2)/2)} \times \sum_{i} \left(\int_{P} a_{2i} dP \right) (m-p+2i) \int_{0}^{\infty} e^{-s^{2}r^{2}} r^{m-p+2i-1} dr.$$

Since $\int_0^\infty t^{2x-1}e^{-t^2}dt = \Gamma(x)/2$ we have

$$\widetilde{A}_{p}^{M}(s) = \frac{\pi^{(m-p)/2}}{\Gamma((m-p+2)/2)} \times \sum_{i} \Gamma((m-p+2i+2)/2) s^{-(m-p+2i)} \int_{P} a_{2i} dP.$$
 (11)

Similarly

$$\widetilde{A}_{q}^{N}(s) = \frac{\pi^{(n-q)/2}}{\Gamma((n-q+2)/2)} \times \sum_{i} \Gamma((n-q+2j+2)/2) s^{-(n-q+2j)} \int_{q} b_{2j} dQ \qquad (12)$$

and

$$\widetilde{A}_{P\times q}^{M\times N}(s) = \frac{\pi^{(m+n-p-q)/2}}{\Gamma((m+n-p-q+2k)/2)} \sum_{k} \Gamma((m+n-p-q+2k+2)/2) \times s^{-(m+n-p-q+2k)} \int_{P\times q} c_{2k} d(P\times Q).$$
(13)

Therefore from (1) we obtain

$$\begin{split} & \sum_{k} \frac{1}{(m+n-p-q)/2} \left(\frac{m+n-p-q}{2} \right) \left(\frac{m+n-p-q}{2} + 1 \right) \\ & \cdots \left(\frac{m+n-p-q}{2} + k \right) s^{-(m+n-p-q+2k)} \int_{P\times q} c_{2k} d(P\times Q) \\ &= \{ \sum_{i} \frac{1}{(m-p)/2} \left(\frac{m-p}{2} \right) \left(\frac{m-p}{2} + 1 \right) \cdots \left(\frac{m-p}{2} + i \right) \\ & \times s^{-(m-p+2i)} \int_{P} a_{2i} dP \} \left\{ \sum_{j} \frac{1}{(n-q)/2} \left(\frac{n-q}{2} \right) \left(\frac{n-q}{2} + 1 \right) \right. \end{split}$$

$$\cdots \left(\frac{n-q}{2}+j\right) s^{-(n-q+2j)} \int_{Q} b_{2j} dQ \}.$$

By equating powers of s we get (6).

Proof of Theorem 3. From (3) and Weyl's tube formula (7) it is easy to see that

$$\int_{P} a_{2i} dP = \frac{(m-p)k_{2i}(P)}{(m-p)(m-p+2)\cdots(m-p+2i)}.$$

Similarly we also have

$$\int_{Q} b_{2j} dQ = \frac{(n-q) k_{2j}(Q)}{(n-q) (n-q+2) \cdots (n-q+2j)}$$

and

$$\int_{P\times Q} c_{2k} d(P\times Q)$$

$$= \frac{(m+n-p-q)k_{2k}(P\times Q)}{(m+n-p-q)(m+n-p-q+2)\cdots(m+n-p-q+2k)}.$$

Putting these equations to (6) we obtain (8).

Proof of Theorem 4. It suffices to prove (10) since (9) is obtained by differentiating (10) with respect to r. According to $P \times Q \subset \mathbb{R}^m \times \mathbb{R}^n = \mathbb{R}^{m+n}$, we have from (7)

$$V_{P\times Q}^{R^{m}\times R^{n}}(r) = \sum_{c=0}^{c(p+q)/21} \frac{\pi^{(m+n-p-q)/2}k_{2c}(P\times Q)}{2^{c}\Gamma((m+n-p-q+2C+2)/2)} r^{m+n-p-q+2c}.$$

Now by the Nijenhuis formula (8), we get (10).

References

- A. Gray, Geodesic balls in Riemannian product manifolds, Differential geometry and relativity, pp. 63-66, Mathematical Phys. and Appl. Math. Vol. 3, Reidel, 1976.
- 2. A. Gray, and L. Vanhecke, *The volume of tubes in a Riemannian manifold*, Rend. Sem. Mat. Univ. Politec. Torino. Vol. 39, No. 3 (1981), 1-50.
- 3. S. Lee, A tube formula in product Riemannian manifolds, Comm. Korean Math. Soc. 1 (1986), 31-34.

- Sungyun Lee, Ki Hyoung Ko, U Jin Choi and Do Young Kwak
- 4. A. Nijenhuis, On Chern's kinematic formula in integral geometry, J. Differential Geom. 9 (1974), 475-482.
- 5. H. Weyl, On the volumes of tubes, Amer. J. Math. 61 (1939), 461-472.

Korea Institute of Technology Taejeon 302-338, Korea

98