• Title/Summary/Keyword: problem solving strategies

Search Result 494, Processing Time 0.029 seconds

Children's Social Competence and Emotion Regulation Strategy according to Peer Friendliness (아동의 또래친밀도에 따른 정서조절전략과 사회적능력)

  • Song, Ji-Hae;Hwang, Hae-Shin
    • Korean Journal of Human Ecology
    • /
    • v.18 no.1
    • /
    • pp.29-39
    • /
    • 2009
  • The purpose of this study is to investigate children's emotional regulation and social competence in relation with peer friendliness. Specifically, it examined the hypotheses that children's emotion regulation strategies would be different depending on age, gender, and peer friendliness, and that children's emotion regulation strategies would affect their social competences. The subjects were 197 of the second, fourth, and sixth graders in an elementary school located in Gangdong-gu, Seoul. The findings are as follows: first, children's emotion regulation strategies are different according to gender and age. Girls use more 'external response strategy' than boys do. Elder children use more 'internal response strategy' than younger children, and younger children use more 'problem solving strategy' than elder children. Second, children's emotion regulation strategies are different depending on the degree of peer friendliness. Children employ more 'problem solving' and 'internal response' strategies to close friends rather than to just friends. Children used more the strategies as 'request for social support', 'evasion', and 'external response' to just friends rather than to close friends. Finally, children's social competencies are influenced by the strategies of 'problem solving' and 'evasion'.

An Analysis of Elementary Mathematics Curricula and Instructional Materials Related to Problem Solving (문제 해결에 관한 초등학교 수학과 교육과정 및 교과용도서 분석)

  • Pang, JeongSuk;Lee, Jiyoung;Seo, Eunmi
    • Journal of Educational Research in Mathematics
    • /
    • v.26 no.3
    • /
    • pp.583-605
    • /
    • 2016
  • Problem solving has been consistently emphasized in national mathematics curricula, whereas the foci of such an emphasis have been changed. Given this background, this study traced down major changes in emphasizing problem solving from the first national mathematics curriculum to the most recent 2015 curriculum. In particular, both the 2009 and the 2015 revised curricula were analyzed in detail to figure out the latest emphasis and trends. This paper then investigated whether a series of mathematics textbooks were aligned to the emphases of recent curricula. It finally discussed some issues that we need to reconsider with regards to problems, problem solving strategies, and the process of problem solving. As such, this study is expected to provide textbook developers with detailed implications on how to employ problem solving in new series of textbooks.

Rule-Inferring Strategies for Abductive Reasoning in the Process of Solving an Earth-Environmental Problem (지구환경적 문제 해결 과정에서 귀추적 추론을 위한 규칙 추리 전략들)

  • Oh, Phil-Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.4
    • /
    • pp.546-558
    • /
    • 2006
  • The purpose of this study was to identify heuristically how abduction was used in a context of solving an earth-environmental problem. Thirty two groups of participants with different institutional backgrounds, i,e., inservice earth science teachers, preservice science teachers, and high school students, solved an open-ended earth-environmental problem and produced group texts in which their ways of solving the problem were written, The inferential processes in the texts were rearranged according to the syllogistic form of abduction and then analyzed iteratively so as to find thinking strategies used in the abductive reasoning. The result showed that abduction was employed in the process of solving the earth-environmental problem and that several thinking strategies were used for inferring rules from which abductive conclusions were drawn. The strategies found included data reconstruction, chained abduction, adapting novel information, model construction and manipulation, causal combination, elimination, case-based analogy, and existential strategy. It was suggested that abductive problems could be used to enhance students' thinking abilities and their understanding of the nature of earth science and earth-environmental problems.

Individual Strategies for Problem Solving

  • Revathy Parameswaran
    • Research in Mathematical Education
    • /
    • v.9 no.1 s.21
    • /
    • pp.11-24
    • /
    • 2005
  • Problem solving is an important aspect of learning mathematics and has been extensively researched into by mathematics educators. In this paper we analyze the difficulties students encounter in various steps involved in solving problems involving physical and geometrical applications of mathematical concepts. Our research shows that, generally students, in spite of possessing adequate theoretical knowledge, have difficulties in identifying the hidden data present in the problems which are crucial links to their successful resolutions. Our research also shows that students have difficulties in solving problems involving constructions and use of symmetry.

  • PDF

Analysis on Analogical Transfer between Mathematical Isomorphic Problems with Different Level of Structuredness (구조화 정도가 다른 수학적 동형 문제 사이의 유추적 전이 분석)

  • Sung, Chang-Geun;Park, Sung-Sun
    • Education of Primary School Mathematics
    • /
    • v.15 no.2
    • /
    • pp.59-75
    • /
    • 2012
  • This study aims to find whether the solutions for well-structured problems learned in school can be transferred to the moderately-structured problem and ill-structured problem. For these purpose, research questions were set up as follows: First, what are the patterns of changes in strategies used in solving the mathematics problems with different level of structuredness? Second, From the group using and not using proportion algorithm strategy in solving moderately-structured problem and ill-structured problem, what features were observed when they were solving that problems? Followings are the findings from this study. First, for the lower level of structuredness, the frequency of using multiplicative strategy was increased and frequency of proportion algorithm strategy use was decreased. Second, the students who used multiplicative strategies and proportion algorithm strategies to solve structured and ill-structured problems exhibited qualitative differences in the degree of understanding concept of ratio and proportion. This study has an important meaning in that it provided new direction for transfer and analogical problem solving study in mathematics education.

Development and Application of Teaching Strategy Focused on Problem Solving Process in the 'Separation of Mixture' Unit of Third Grade Elementary School (초등학교 3학년 '혼합물의 분리' 단원에서 문제해결 과정을 강조한 수업 전략 개발 및 적용)

  • Lee, Shin Hyun;Choi, Sun-Young
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.1
    • /
    • pp.105-114
    • /
    • 2014
  • The purpose of this study was to develop a teaching strategy focused on problem solving process and explore its effects on science creative problem solving ability, science process skills, science academic achievements and scientific attitudes of students after applying it. Teaching strategy focused on problem solving process employed brainstorming and PMI thinking strategies. The participants were the third grade students of both an experimental class(26 students) and a comparative class(25 students) at the S elementary school located in Goyang-City, Kyonggi Province. The developed strategy was applied to the experimental class for 9 periods of 'Separation of mixture' unit. The results of the tests on the science creative problem solving ability, the science process skills, scientific achievement and scientific attitude were statistically higher in the experimental class.

Gender Characteristics in Elementary Science Problem Solving Process (초등 과학 문제 풀이 과정에서의 성별 특성)

  • Shin, Dong-Hee;Park, Byung-Tai
    • Journal of Korean Elementary Science Education
    • /
    • v.28 no.3
    • /
    • pp.229-244
    • /
    • 2009
  • This study was initiated to investigate sixth graders' gender characteristics in science problem solving process and thus find out the proper learning and teaching strategies for each gender. A total of 14 students, each of seven male and female students, were selected through three tests, including items of science knowledge, science inquiry, and creativity. Students were required to solve 26 items and to think aloud for researchers help understand how they thought in their problem solving process. Males and females showed some similarity and difference in four steps of problem solving process, understanding, planning, solving, and reviewing. We found gender differences in self-confidence of their answer. This study is expected to help develop teachers' differential teaching strategy for male and female students' science problem solving.

  • PDF

The Effect of Using Digital Science Textbook on the Scientific Problem Solving of Elementary School Students (초등과학 디지털 교과서 활용이 학생들의 과학적 문제 해결력에 미치는 영향)

  • Choi, Sun-Young;Seo, Jeong-Hee
    • Journal of Korean Elementary Science Education
    • /
    • v.28 no.2
    • /
    • pp.132-141
    • /
    • 2009
  • The purpose of this research was to investigate the effect of using digital science textbook on the scientific problem solving of elementary school students. For this research, an instrument to measure student's problem-solving skills was developed. The pretest and posttest scores of one hundred and six 5th grade students' problem-solving skills were analyzed and also the responses of three students who were selected by their levels in the problem-solving science digital textbook class were qualitatively analyzed. The results of this study were as follows; the scores of problem solving skills of science digital textbook groups were higher than that of traditional paper textbook group(p<.05). In the qualitative analysis of the students' reponses in a digital textbook class according to their achievement level, low-achievers' problem-solving skills were much more improved than high- and mid-achievers' skills. In conclusion, science digital textbook has a potential to improve students' scientific problem solving skills, and this possibility will be much higher when science digital textbook is used with teachers' intended instructional goals and strategies like problem-solving lessons.

  • PDF

The Effect of the Belief Systems on the Problem Solving Performance of the Middle School Students (중학생의 신념체계가 수학적 문제해결 수행에 미치는 영향)

  • Kwon Se Hwa;Jeon Pyung Kook
    • The Mathematical Education
    • /
    • v.31 no.2
    • /
    • pp.109-119
    • /
    • 1992
  • The primary purpose of the present study is to provide the sources to improve the mathematical problem solving performance by analyzing the effects of the belief systems and the misconceptions of the middle school students in solving the problems. To attain the purpose of this study, the reserch is designed to find out the belief systems of the middle school students in solving the mathematical problems, to analyze the effects of the belief systems and the attitude on the process of the problem solving, and to identify the misconceptions which are observed in the problem solving. The sample of 295 students (boys 145, girls 150) was drawn out of 9th grade students from three middle schools selected in the Kangdong district of Seoul. Three kinds of tests were administered in the present study: the tests to investigate (1) the belief systems, (2) the mathematical problem solving performance, and (3) the attitude in solving mathematical problems. The frequencies of each of the test items on belief systems and attitude, and the scores on the problem solving performance test were collected for statistical analyses. The protocals written by all subjects on the paper sheets to investigate the misconceptions were analyzed. The statistical analysis has been tabulated on the scale of 100. On the analysis of written protocals, misconception patterns has been identified. The conclusions drawn from the results obtained in the present study are as follows; First, the belief systems in solving problems is splited almost equally, 52.95% students with the belief vs 47.05% students with lack of the belief in their efforts to tackle the problems. Almost half of them lose their belief in solving the problems as soon as they given. Therefore, it is suggested that they should be motivated with the mathematical problems derived from the daily life which drew their interests, and the individual difference should be taken into account in teaching mathematical problem solving. Second. the students who readily approach the problems are full of confidence. About 56% students of all subjects told that they enjoyed them and studied hard, while about 26% students answered that they studied bard because of the importance of the mathematics. In total, 81.5% students built their confidence by studying hard. Meanwhile, the students who are poor in mathematics are lack of belief. Among are the students accounting for 59.4% who didn't remember how to solve the problems and 21.4% lost their interest in mathematics because of lack of belief. Consequently, the internal factor accounts for 80.8%. Thus, this suggests both of the cognitive and the affective objectives should be emphasized to help them build the belief on mathematical problem solving. Third, the effects of the belief systems in problem solving ability show that the students with high belief demonstrate higher ability despite the lack of the memory of the problem solving than the students who depend upon their memory. This suggests that we develop the mathematical problems which require the diverse problem solving strategies rather than depend upon the simple memory. Fourth, the analysis of the misconceptions shows that the students tend to depend upon the formula or technical computation rather than to approach the problems with efforts to fully understand them This tendency was generally observed in the processes of the problem solving. In conclusion, the students should be taught to clearly understand the mathematical concepts and the problems requiring the diverse strategies should be developed to improve the mathematical abilities.

  • PDF

Research on the Instructional Strategies to Foster Problem Solving Ability as Mathematical Subject Competency in Elementary Classrooms (초등학교 수업에서 수학 교과 역량으로서의 문제 해결 능력을 함양하기 위한 지도 방안 탐색)

  • Choi, Inyoung;Pang, JeongSuk
    • Education of Primary School Mathematics
    • /
    • v.21 no.3
    • /
    • pp.351-374
    • /
    • 2018
  • The purpose of this study is to support the understandings of teachers about the instructional strategies of collaborative problem solving and mathematical modeling as presented in the 2015 revised mathematics curriculum. For this, tasks of the Cubes unit from six grader's and lesson plans were developed. The specific problem solving processes of students and the practices of teachers which appeared in the classes were analyzed. In the course of solving a series of problems, students have formed a mathematical model of their own, modifying and complementing models in the process of sharing solutions. In particular, it was more effective when teachers explicitly taught students how to share and discuss problem-solving. Based on these results this study is expected to suggest implications on how to foster students' problem solving ability as mathematical subject competency in elementary classrooms.