DOI QR코드

DOI QR Code

Analysis on Analogical Transfer between Mathematical Isomorphic Problems with Different Level of Structuredness

구조화 정도가 다른 수학적 동형 문제 사이의 유추적 전이 분석

  • Received : 2012.06.13
  • Accepted : 2012.07.25
  • Published : 2012.08.31

Abstract

This study aims to find whether the solutions for well-structured problems learned in school can be transferred to the moderately-structured problem and ill-structured problem. For these purpose, research questions were set up as follows: First, what are the patterns of changes in strategies used in solving the mathematics problems with different level of structuredness? Second, From the group using and not using proportion algorithm strategy in solving moderately-structured problem and ill-structured problem, what features were observed when they were solving that problems? Followings are the findings from this study. First, for the lower level of structuredness, the frequency of using multiplicative strategy was increased and frequency of proportion algorithm strategy use was decreased. Second, the students who used multiplicative strategies and proportion algorithm strategies to solve structured and ill-structured problems exhibited qualitative differences in the degree of understanding concept of ratio and proportion. This study has an important meaning in that it provided new direction for transfer and analogical problem solving study in mathematics education.

본 연구의 목적은 구조화 정도가 다른 수학적 동형 문제 사이의 유추적 전이를 분석하는 것이다. 이를 위해 다음과 같은 연구문제를 설정하여 분석하였다. 첫째, 구조화 정도가 다른 수학 문제를 해결하는데 사용된 전략의 변화 양상은 어떠한가? 둘째, 구조화된 문제와 비-구조화된 문제를 해결하는데 비례식 알고리듬 전략을 사용한 학생과 그렇지 않은 학생의 문제해결 특징은 어떠한가? 연구 결과를 다음과 같다, 첫째, 구조화 정도가 낮은 문제의 해결에서는 곱셈적 전략의 사용빈도가 증가하였으며, 반대로 비례식 알고리듬 전략 사용빈도는 감소하였다. 둘째, 비와 비례에 대해 개념적 이해 수준이 높은 학생은 구조화정도가 다른 문제들 사이의 구조적 유사성을 인식하고, 비례식 알고리듬 전략을 사용해 문제를 성공적으로 해결하였다. 이 연구는 학생들의 유추적 전이 능력을 신장시키기 위해 수학 수업은 어떠한 점에 초점을 맞추어야 하는지와 그리고 유추적 전이 연구에 대한 새로운 방법론적 대안을 제시했다는 점에서 그 의의를 찾을 수 있다.

Keywords

References

  1. 김민경․이지영․홍지연․김은경(2011). 초등학교 수학 교과서에 나타난 문제의 비구조성에 관한 연구. 학습자중심교과교육연구, 11(2), 1-21.
  2. 박성선(1998). 수학학습에서 상황인지론 적용과 전이에 대한 연구. 한국교원대학교 박사학위논문.
  3. 우정호․정은실(1995). Polya의 수학적 발견술 연구. 대한수학교육학회 논문집, 5(1), 99-117.
  4. 이종희(2003). 수학 문장제 해결과 유추. 교과교육학연구, 7(2), 63-79.
  5. 이종희․김진화․김선희(2003). 중학생을 대상으로 한 대수 문장제 해결에서의 유추적 전이. 한국수학교육학회지 시리즈 A <수학교육>, 42(3), 353-368.
  6. 이종희․이진향․김부미(2003). 중학생들의 유추에 의한 수학적 문제 해결 과정: 사상의 명료화를 중심으로. 한국수학교육학회지 시리즈 E <수학교육논문집>, 16, 245-267.
  7. Bassok, M. (1997). Two types of reliance on correlation between content and structure in reasoning about word problem. In L. D. English(Ed.), Mathematical reasoning: Anlogies, metaphors, and images (pp. 221-246). Mahwah, NY: Lawrence Erlbaum Associates, Publishers.
  8. Bassok, M., & Olseth, K. L. (1995). Object-based representations: Transfer between cases of continuous and discrete models of change. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(6), 354-367.
  9. Chen, Z. (1996). Children's analogical problem solving: The effect of superficial, Structural, and procedural similarity. Journal of Experimental Child Psychology, 62(3), 410-431. https://doi.org/10.1006/jecp.1996.0037
  10. Chi, M. T. H. (2006). Laboratory method for assessing experts' and novices' knowledge. In K. A. Erricsson, N. Charness, P. J. Feltovich, & R. R. Hoffmann(Eds.), The Cambridge handbook of expertise and expert performance (pp. 167-184). NY: Cambridge University Press.
  11. Chi, M. T. H., & Vanlehn, K. A. (1991). The content of physics self-explanations. Journal of the Learning Science, 1(1), 69-105. https://doi.org/10.1207/s15327809jls0101_4
  12. Chi, M. T. H., Feltovich, P., & Glaser, R. (1981). Categorization and representation of physics problem by experts and novices. Cognitive Science, 5(2), 121-152. https://doi.org/10.1207/s15516709cog0502_2
  13. English, L. D. (1997). Children's reasoning process in classifying and solving computational word problem. In L. D. English(Ed.), Mathematical reasoning: Analogies, metaphors, and images (pp. 191-220). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
  14. English, L. D. (2004). Mathematical and analogical reasoning in early childhood. In L. D. English(Ed.), Mathematical and analogical reasoning of young learners (pp. 1-22). Mahwah, NY: Lawrence Erlbaum Associates, Publishers
  15. English, L. D., & Halford, G. S. (1995). Mathematics education: Model and processes. Mahwah, NJ: Lawrence Erlbaum Associates.
  16. English, L. D., & Halford, G. S. (1995). Mathematics education. Mahwah, NY: Lawrence Erlbaum Associates, Publishers.
  17. Erricson, K. A. (2006). Protocol analysis and expert thought: Concurrent verbalizations of thinking during experts' performance on representative tasks. In K. A. Erricson, N. Charness, P. J. Feltovich, & R. R. Hoffmann (Eds.), The Cambridge handbook of expertise and expert performance (pp. 223-242). NY: Cambridge University Press.
  18. Gentner, D., & Loewenstein, J. (2003). Learning: Analogical reasoning. Encyclopedia of Education. NY: Macmillian.
  19. Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12, 306-355. https://doi.org/10.1016/0010-0285(80)90013-4
  20. Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 1-38 https://doi.org/10.1016/0010-0285(83)90002-6
  21. Holyoak, K. J., & Koh, K. (1987). Surface and structural similarity in analogical transfer. Memory & Cognition, 15(4), 332-340. https://doi.org/10.3758/BF03197035
  22. Holyoak, K. J., & Thagard, P. (1995). Mental leaps: Analogy in creative thought. Cambridge, MA: MIT Press.
  23. Jay, E. S., & Perkins, D. N. (1997). Problem finding: The search for mechanism. In M. A. Runco (Ed.), The creativity research handbook. Cresskii, NJ: Hampton Press Inc.
  24. Jonassen, D. G. (2010). Research issue in problem solving. Paper presented at the 11th International Conference on Education Research(Seoul, Korea).
  25. Jonassen, D. G., & Hung, W. (2008). All problems are not equal: Implications for problem-based learning. The Interdisciplinary Journal of Problem Based Learning, 2(2), 6-28.
  26. Lamon. S. J. (2005). Teaching fractions and ratios for understanding: Essential content knowledge and instructional strategies for teacher. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
  27. Lave, J. (1988). Cognition in practice. NY: Cambridge University Press.
  28. Lesh, R., Behr, M., & Post, T. (1988). Proportional Reasoning. In J. Hiebert, & M. Behr(Eds.), Number concept and operations in the middle grades pp. 93-118). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
  29. Mayer, R. E. (1992). Thinking, problem solving, cognition. NY: Freeman and Company.
  30. Mayer, R. E., & Hegarty, M. (1996). The process of understanding mathematical problems. In R. J. Sternberg, & T. Ben-Zeev(Eds.), The nature of mathematical thinking(pp. 5-29). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
  31. Perkins, D. N., & Salomon, G. (1988). Are cognitive skill context-bound? Educational Researcher, 18(1), 16-25.
  32. Reed, S. K. (1999). Word problems: Research and curriculum reform. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
  33. Reeves, L. M., & Weisberg, R. W. (1994). The role of content and abstract information in analogical transfer. Psychological Bulletin, 115(3), 381-400. https://doi.org/10.1037/0033-2909.115.3.381
  34. Weisberg, R. W. (2006). Expertise and reason in creative thinking. In J. C. Kaufman, & J. Bear(Eds.), Creativity and reason in cognitive development, (pp. 7-42). NY: Cambridge University Press.
  35. Wood, P. K. (1983). Inquiring systems and problem structure: Implications for cognitive development. Human Development, 26(5), 249-265. https://doi.org/10.1159/000272887