DOI QR코드

DOI QR Code

지구환경적 문제 해결 과정에서 귀추적 추론을 위한 규칙 추리 전략들

Rule-Inferring Strategies for Abductive Reasoning in the Process of Solving an Earth-Environmental Problem

  • 발행 : 2006.08.30

초록

본 연구의 목적은 지구환경적 문제를 해결하는 과정 중에 귀추법이 어떻게 활용되는가를 발견법적으로 확인하기 위한 것이었다. 현직 지구과학 교사, 사범대학의 예비 과학 교사, 그리고 고등학교 학생 등 서로 다른 배경을 지닌 참여자들이 총 32개 조를 이루어 끝이 열린 형태의 지구환경적 문제를 해결하였고, 그 과정에서 자신들의 추론 과정이 기록된 텍스트를 산출하였다. 이 텍스트에 포함된 추론 과정을 귀추법의 삼단논법적 형식에 따라 정리하고 귀추적 추론에서 사용된 사고 전략들을 반복적으로 분석하였다. 그 결과, 추론자들이 지구환경적 문제 해결 상황에서 귀추법을 사용하였으며, 그들은 다양한 사고 전략들을 활용하여 귀추적 결론을 낳게 하는 규칙을 추리해 내었음을 알 수 있었다. 이 전략들은 자료의 재구성, 연쇄적 귀추, 특이 정보의 채택, 모델 구성 및 조작, 인과적 결합, 제거, 사례 기반의 유추, 그리고 존재에 관한 전략 등이었다. 결론적으로, 학생들의 사고 능력을 증진시키고 지구과학과 지구환경적 문제 해결 과정의 특징에 대한 학생들의 이해를 함양하기 위하여 귀추적 추론 과제가 이용될 수 있다는 것을 시사 받을 수 있었다.

The purpose of this study was to identify heuristically how abduction was used in a context of solving an earth-environmental problem. Thirty two groups of participants with different institutional backgrounds, i,e., inservice earth science teachers, preservice science teachers, and high school students, solved an open-ended earth-environmental problem and produced group texts in which their ways of solving the problem were written, The inferential processes in the texts were rearranged according to the syllogistic form of abduction and then analyzed iteratively so as to find thinking strategies used in the abductive reasoning. The result showed that abduction was employed in the process of solving the earth-environmental problem and that several thinking strategies were used for inferring rules from which abductive conclusions were drawn. The strategies found included data reconstruction, chained abduction, adapting novel information, model construction and manipulation, causal combination, elimination, case-based analogy, and existential strategy. It was suggested that abductive problems could be used to enhance students' thinking abilities and their understanding of the nature of earth science and earth-environmental problems.

키워드

참고문헌

  1. 권용주, 심해숙, 정진수, 박국태 (2003). 수증기 응결에 관한 초등학생들의 가설 생성에서 귀추의 역할과 과정. 한국지구과학회지, 24(4), 250-257
  2. 김찬종 (1998). 초등 과학 우수 학생의 일상적 맥락의 과학 문제 해결 과정: 서답형 문항에 대한 응답 분석. 한국초등과학교육학회지, 17(1), 75-87
  3. 박종원 (2001). 학생의 과학적 설명 가설의 생성 과정 분석: 대학생의 반응 분석을 중심으로. 한국과학교육학회지, 21(3), 209-621
  4. 오필석 (2005). 지구과학적으로 탐구하기: 지구과학 수업에서의 귀추적 탐구. 함께하는 지구과학교육, 4(1), 52-60
  5. 오필석, 김찬종 (2005). 지구과학의 한 탐구 방법으로서 귀추법에 대한 이론적 고찰. 한국과학교육학회지, 25(6), 610-623
  6. Baker, V. R. (1996). Hypothese and geomorphological reasoning. In B. L. Rhoads & C. E. Thorn (Eds.), The scientific nature of geomorphology, (pp. 57-85). New York, NY: John Wiely & Sons
  7. Baker, V. R. (2(H)). Conversing with the Earth: The geological approach to understanding. In R. Frodeman (Ed.), Earth matters: The earth sciences, philosophy, and the claims of community, (pp. 2-10). Upper Saddle River, NJ: Prentice Hall
  8. Bonfantini, M A., & Proni, G. (1983). To guess or not to guess? In U. Eco & T. A. Sebeok (Ed.), The sign of three: Dupin, Holmes, Peirce, (pp. 119-134). Bloomington, IN: Indiana University Press
  9. Dodick, J., & Orion, N. (2003). Geology as an historical science: Its perception within science and the educational system. Science & Education, 12, 197-211
  10. Duschl, R. A., & Smith, M. J. (2001). Earth science. In J. Brophy (Ed.), Subject-specific instructional methods and activities, (pp. 269-290). Oxford, UK: Elsevier Science
  11. Eco, U. (1983). Horns, hooves, insteps: Some hypotheses on three types of abduction. In U. Eco & T. A. Sebeok (Ed.), The sign of three: Dupin, Holmes, Peirce, (pp. 198-220). Bloomington, IN: Indiana University Press
  12. Elgelhardt, W. von., & Zimmermann, J. (1982). Theory of earth science (translated by L. Fischer). Cambridge, UK: Cambridge University Press
  13. Giere, R. N. (1999). Science without laws. Chicago, IL: The University of Chicago Press
  14. Gilbert, G. K. (1896). The origin of hypotheses: Illustrated by the discussion of a topographical problem. Science, New Series, 3(53), 1-13
  15. Gilbert, S. W., & Ireton, S. W. (2003). Understanding models in earth and space science. Arlington, VA: NSTA Press
  16. Harre, R. (1972). The philosophies of science. (민찬홍, 이병욱 (역) (1985). 과학철학. 서울: 서광사). Oxford, UK: Oxford University Press
  17. Harrowitz, N. (1983). The body of the detective model: Charles S. Peirce and Edgar Allan Poe. In U. Eco & T. A. Sebeok (Ed.), The sign of three: Dupin, Holmes, Peirce, (pp. 179-197). Bloomington, IN: Indiana University Press
  18. Johnson, T. R, & Krems, J. F. (2001). Use of current explanations in multicausal abductive reasoning. Cognitive Science, 25, 903-939
  19. Kim, C.-J. (2002). Inference frequently used in earth science. Journal of the Korean Earth Sciecne Society, 23(2), 188-193
  20. Kim, C.-J. (2003). Preparing teachers for systems science methodology. In V. J. Mayer (Ed.), Implementing global science literacy, (pp. 255-266). Columbus, OH: The Ohio State University
  21. Kim, J., & Cunningham, D. J. (2003). A syllogism for formulating hypotheses. Semiotica, 144, 303-317
  22. Kruijff, G.-J. M. (2005). Peirce's late theory of abduction: A comprehensive account. Semiotica, 153, 431-454
  23. Leak, D. B. (1995). Abduction, experience, and goals: A model of everyday abductive explanation. The Journal of Experimental and Theoretical Artificial Intelligence, 7, 407-428
  24. Magnani, L. (2001). Abduction, reason, and science: Process of discovery and explanation. New York, NY: Kluwer Academic/Plenum Publishers
  25. Mannoia, V. J. (1980). What is science? An introduction to the structure and methodology of science. Lanham, MD: University of Press of America
  26. National Research Council (19%). National Science Education Standards. Washington, EC: National Academy Press
  27. Rhoads, B. L, & Thorn, C. E. (1996). Observation in geomorphology. In B. L. Rhoads & C. E. Thorn (Eds.), The scientific nature of geomorphology, (pp. 21-56). New York, NY: John Wiely & Sons
  28. Schumm, S. A. (1991). To interpret the Earth: Ten ways to be wrong. Cambridge, UK: Cambridge University Press
  29. Schurz, G. (2002). Model of abduction: From an interrogative viewpoint. In G. Schurz & M. Werning. (Eds.), Philosophical prepublication series of the chair of theoretical philosophy at the University of Duseldorf. Available from http://thphil.phil-fak.uni-duesseldorf.de/index.php/filemanager/download/68/ModelsAbducReasoning.pdf
  30. Shelley, C. (1996). Visual abductive reasoning in archaeology. Philosophy of Science, 63, 278-301
  31. Solomon, M. (1992). Scientific rationality and human reasoning. Philosophy of Science, 59, 439-455
  32. Thagard, P. (1988). Computational philosophy of science. Cambridge, MA: The MIT Press
  33. Thagard, P. (1992). Conceptual revolutions. Princeton, N.I: Princeton University Press
  34. The Watercourse and Council for Environmental Education (1995). Project WET: Curriculum & Activity Guide. Bozeman, MT: Author