• Title/Summary/Keyword: problem analysis

Search Result 16,360, Processing Time 0.047 seconds

Shape Design Sensitivity Analysis of Supercavitating Flow Problem (초공동(超空洞) 유동 문제의 형상 설계민감도 해석)

  • Choi, J.H.;Gwak, H.G.;Grandhi, R.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1047-1052
    • /
    • 2004
  • An efficient boundary-based technique is developed for addressing shape design sensitivity analysis in supercavitating flow problem. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in potential flow problems. The formula, which is expressed in terms of the boundary solutions and shape variation vectors, can be conveniently used for gradient computation in a variety of shape design in potential flow problems. While the sensitivity can be calculated independent of the analysis means, such as the finite element method (FEM) or the boundary element method (BEM), the FEM is used for the analysis in this study because of its popularity and easy-touse features. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The supercavitating flow problem is chosen to illustrate the efficiency of the proposed methodology. Implementation issues for and optimization procedure are addressed in this flow problem.

  • PDF

Shape Design Sensitivity Analysis for Stability of Elastic Structures (탄성 구조물의 안정성을 고려한 형상설계민감도해석)

  • Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.76-83
    • /
    • 2006
  • This paper addresses the method for the shape design sensitivity analysis of the buckling load in the continuous elastic body. The sensitivity formula for critical load is analytically derived and expressed in terms of shape variation, based on the continuum formulation of the stability problem. Though the buckling problem is more efficiently solved by the structural elements such as beam and shell, the elastic solids are considered in this paper because the solid elements can be used in general for any kind of structures whether they are thick or thin. The initial stress and buckling analysis is carried out by the commercial analysis code ANSYS. The sensitivity is computed by using the mathematical package MATLAB using the results of ANSYS. Several problems including straight and curved beams under compressive load, ring under pressure load, thin-walled section and bottle shaped column are chosen to illustrate the efficiency of the presented method.

Combining cluster analysis and neural networks for the classification problem

  • Kim, Kyungsup;Han, Ingoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.31-34
    • /
    • 1996
  • The extensive researches have compared the performance of neural networks(NN) with those of various statistical techniques for the classification problem. The empirical results of these comparative studies have indicated that the neural networks often outperform the traditional statistical techniques. Moreover, there are some efforts that try to combine various classification methods, especially multivariate discriminant analysis with neural networks. While these efforts improve the performance, there exists a problem violating robust assumptions of multivariate discriminant analysis that are multivariate normality of the independent variables and equality of variance-covariance matrices in each of the groups. On the contrary, cluster analysis alleviates this assumption like neural networks. We propose a new approach to classification problems by combining the cluster analysis with neural networks. The resulting predictions of the composite model are more accurate than each individual technique.

  • PDF

Analysis of the J-integral for Two-dimensional and Three-dimensional Crack Configurations in Welds of Steel Structure (강구조물 응접접합부의 2차원 및 3차원 균열에 대한 J-적분 해석)

  • 이진형;장경호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.270-277
    • /
    • 2004
  • In this paper, path-independent values of the J-integral in the fininte element context for arbitrary two-dimensional and three-dimensional crack configurations in welds are presented. For the fracture mechanics analysis of cracks in welds, residual stress analysis and fracture analysis must be performed simultaneously. In the analysis of cracked bodies containing residual stress, the usual domain integral formulation results in path-dependent values of the J-integral. This paper discusses modifications of the conventional J-integral that yield path independence in the presence of residual stress generated by welding. The residual stress problem is treated as an initial strain problem and the J-integral modified for this class of problem is used. And a finite element program which can evaluate the J-integral for cracks in two-dimensional and three-dimensional residual stress bearing bodies is developed using the modified J-integral definition. The situation when residual stress only is present is examed as is the case when mechanical stresses are applied in conjunction with a residual stress field.

  • PDF

Shape Design Sensitivity Analysis for Stability of Elastic Structure (탄성 구조물의 안정성을 고려한 형상설계 민감도해석)

  • Choi Joo-Ho;Yang Wook-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.841-846
    • /
    • 2006
  • This paper addresses the method for the shape design sensitivity analysis of the buckling load in the continuous elastic body. The sensitivity formula for critical load is analytically derived and expressed in terms of shape variation, based on the continuum formulation of the stability problem. Though the buckling problem is more efficiently solved by the structural elements such as beam and shell, the elastic solids are considered in this paper because the solid elements can be used in general for any kind of structures whether they are thick or thin. The initial stress and buckling analysis is carried out by the commercial analysis code ANSYS. The sensitivity is computed by using the mathematical package MATLAB using the results of ANSYS. Several problems including straight and curved beams under compressive load, ring under pressure load, thin-walled section are chosen to illustrate the efficiency of the presented method.

  • PDF

KNE: An Automatic Dictionary Expansion Method Using Use-cases for Morphological Analysis

  • Nam, Chung-Hyeon;Jang, Kyung-Sik
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.3
    • /
    • pp.191-197
    • /
    • 2019
  • Morphological analysis is used for searching sentences and understanding context. As most morpheme analysis methods are based on predefined dictionaries, the problem of a target word not being registered in the given morpheme dictionary, the so-called unregistered word problem, can be a major cause of reduced performance. The current practical solution of such unregistered word problem is to add them by hand-write into the given dictionary. This method is a limitation that restricts the scalability and expandability of dictionaries. In order to overcome this limitation, we propose a novel method to automatically expand a dictionary by means of use-case analysis, which checks the validity of the unregistered word by exploring the use-cases through web crawling. The results show that the proposed method is a feasible one in terms of the accuracy of the validation process, the expandability of the dictionary and, after registration, the fast extraction time of morphemes.

EXISTENCE AND MULTIPLICITY OF SOLUTIONS OF p(x)-TRIHARMONIC PROBLEM

  • Belakhdar, Adnane;Belaouidel, Hassan;Filali, Mohammed;Tsouli, Najib
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.349-361
    • /
    • 2022
  • In this paper, we study the following nonlinear problem: $$\{-\Delta_{p}^{3}(x)u\;=\;{\lambda}V_{1}(x){\mid}u{\mid}^{q(x)-2}u\;in\;{\Omega},\\u\;=\;{\Delta}u\;{\Delta}^{2}u\;=\;0\;on\;{\partial}\Omega, $$ under adequate conditions on the exponent functions p, q and the weight function V1. We prove the existence and nonexistence of eigenvalues for p(x)-triharmonic problem with Navier boundary value conditions on a bounded domain in ℝN. Our technique is based on variational approaches and the theory of variable exponent Lebesgue spaces.

CONSTRUCTION OF THE 2D RIEMANN SOLUTIONS FOR A NONSTRICTLY HYPERBOLIC CONSERVATION LAW

  • Sun, Meina
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.201-216
    • /
    • 2013
  • In this note, we consider the Riemann problem for a two-dimensional nonstrictly hyperbolic system of conservation laws. Without the restriction that each jump of the initial data projects one planar elementary wave, six topologically distinct solutions are constructed by applying the generalized characteristic analysis method, in which the delta shock waves and the vacuum states appear. Moreover we demonstrate that the nature of our solutions is identical with that of solutions to the corresponding one-dimensional Cauchy problem, which provides a verification that our construction produces the correct global solutions.

A Study of Cyclic Scheduling Analysis in FMS Based on the Transitive Matrix (추이적 행렬을 이용한 유연생산시스템의 순환 스케쥴링 분석)

  • 이종근
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.4
    • /
    • pp.57-68
    • /
    • 2002
  • The analysis of the cyclic scheduling problem in FMS using the transitive matrix has been proposed. Since the transitive matrix may explain all the relations between the places and transitions, we propose an algorithm to get good solution after slicing off some subnets from the original net based on machines operations. For analyzing the schedule problem, we considered two time functions such as produce time and waiting time using the P-invariant. In addition, we are shown the effectiveness of proposed algorithm after comparing with unfolding algorithms.

  • PDF

Dynamic analysis of a laminated composite beam under harmonic load

  • Akbas, S.D.
    • Coupled systems mechanics
    • /
    • v.9 no.6
    • /
    • pp.563-573
    • /
    • 2020
  • Dynamic responses of a laminated composite cantilever beam under a harmonic are investigated in this study. The governing equations of problem are derived by using the Lagrange procedure. The Timoshenko beam theory is considered and the Ritz method is implemented in the solution of the problem. The algebraic polynomials are used with the trivial functions for the Ritz method. In the solution of dynamic problem, the Newmark average acceleration method is used in the time history. In the numerical examples, the effects of load parameter, the fiber orientation angles and stacking sequence of laminas on the dynamic responses of the laminated beam are investigated.