1 |
Akbas, S.D. (2019e), "Post-buckling analysis of a fiber reinforced composite beam with crack", Eng. Fract. Mech., 212, 70-80. https://doi.org/10.1016/j.engfracmech.2019.03.007.
DOI
|
2 |
Akbas, S.D. (2019f), "Nonlinear static analysis of laminated composite beams under hygro-thermal effect", Struct. Eng. Mech., 72(4), 433-441. http://dx.doi.org/10.12989/sem.2019.72.4.433.
DOI
|
3 |
Akbas, S.D. (2019g), "Nonlinear behavior of fiber reinforced cracked composite beams", Steel Compos. Struct., 30(4), 327-336. http://dx.doi.org/10.12989/scs.2019.30.4.327.
DOI
|
4 |
Al-Furjan, M.S.H., Habibi, M., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020a), "Chaotic oscillation of a multi-scale hybrid nano-composites reinforced disk under harmonic excitation via GDQM", Composite Structures, 252, 112737. http://dx.doi.org/10.1016/j.compstruct.2020.112737.
DOI
|
5 |
Al-Furjan, M.S.H., Habibi, M., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020b), "Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM", Eng. Comput., 1-24. https://doi.org/10.1007/s00366-020-01144-2.
DOI
|
6 |
Al-Furjan, M.S.H., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020c), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01088-7.
DOI
|
7 |
Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic microcomposite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. http://dx.doi.org/10.12989/sem.2019.71.5.485.
DOI
|
8 |
Bahmyari, E., Mohebpour, S.R. and Malekzadeh, P. (2014), "Vibration analysis of inclined laminated composite beams under moving distributed masses", Shock Vib., 2014, Article ID 750916. http://dx.doi.org/10.1155/2014/750916.
DOI
|
9 |
Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. http://dx.doi.org/10.12989/scs.2019.33.1.081.
DOI
|
10 |
Belbachir, N., Bourada, M., Draiche, K., Tounsi, A., Bourada, F., Bousahla, A.A. and Mahmoud, S.R. (2020), "Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory", Smart Struct. Syst., 25(4), 409-422. http://dx.doi.org/10.12989/sss.2020.25.4.409.
DOI
|
11 |
Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete, 25(6), 485-495. http://dx.doi.org/10.12989/cac.2020.25.6.485.
DOI
|
12 |
Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166. http://dx.doi.org/10.12989/cac.2020.25.2.155.
DOI
|
13 |
Bozyigit, B., Yesilce, Y. and Wahab, M.A. (2020b), "Single variable shear deformation theory for free vibration and harmonic response of frames on flexible foundation", Eng. Struct., 208, 110268. http://dx.doi.org/10.12989/sem.2020.74.1.033.
DOI
|
14 |
Bozyigit, B., Yesilce, Y. and Wahab, M.A. (2020a), "Free vibration and harmonic response of cracked frames using a single variable shear deformation theory", Struct. Eng. Mech., 74(1), 33-54. http://dx.doi.org/10.12989/sem.2020.74.1.033.
DOI
|
15 |
Ghayesh, M.H. (2018), "Mechanics of tapered AFG shear-deformable microbeams", Microsyst. Technol., 24(4), 1743-1754. https://doi.org/10.1007/s00542-018-3764-y.
DOI
|
16 |
Bozyigit, B., Yesilce, Y. and Wahab, M.A. (2020c), "Transfer matrix formulations and single variable shear deformation theory for crack detection in beam-like structures", Struct. Eng. Mech., 73(2), 109-121. http://dx.doi.org/10.12989/sem.2020.73.2.109.
DOI
|
17 |
DeValve, C. and Pitchumani, R. (2014), "Analysis of vibration damping in a rotating composite beam with embedded carbon nanotubes", Compos. Struct., 110, 289-296. https://doi.org/10.1016/j.compstruct.2013.12.007.
DOI
|
18 |
Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A. S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
DOI
|
19 |
Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
DOI
|
20 |
Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded sizedependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090.
DOI
|
21 |
Gillich, G.R., Praisach, Z.I., Abdel Wahab, M., Gillich, N., Mituletu, I.C. and Nitescu, C. (2016), "Free vibration of a perfectly clamped-free beam with stepwise eccentric distributed masses", Shock Vib., 2016, Article ID 2086274. https://doi.org/10.1155/2016/2086274.
DOI
|
22 |
Akbas, S.D. (2017b), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupl. Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.
DOI
|
23 |
Akbas, S.D. (2013), "Geometrically nonlinear static analysis of edge cracked Timoshenko beams composed of functionally graded material", Math. Prob. Eng., 2013, Article ID 871815. https://doi.org/10.1155/2013/871815.
DOI
|
24 |
Hadji, L., Zouatnia, N. and Kassoul, A. (2017), "Wave propagation in functionally graded beams using various higher-order shear deformation beams theories", Struct. Eng. Mech., 62(2), 143-149. https://doi.org/10.12989/sem.2017.62.2.143.
DOI
|
25 |
Karami, B., Janghorban, M. and Tounsi, A. (2019), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
DOI
|
26 |
Akbas, S.D. (2014), "Free vibration of axially functionally graded beams in thermal environment", Int. J. Eng. Appl. Sci., 6(3), 37-51. https://doi.org/10.24107/ijeas.251224.
DOI
|
27 |
Akbas, S.D. (2015a), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
DOI
|
28 |
Akbas, S.D. (2015b), "Free vibration and bending of functionally graded beams resting on elastic foundation", Res. Eng. Struct. Mater., 1(1), 25-37. http://dx.doi.org/10.17515/resm2015.03st0107.
DOI
|
29 |
Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stab. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.
DOI
|
30 |
Akbas, S.D. (2017c), "Stability of a non-homogenous porous plate by using generalized differantial quadrature method", Int. J. Eng. Appl. Sci., 9(2), 147-155. https://doi.org/10.24107/ijeas.322375.
DOI
|
31 |
Palanivel, S. (2006), "Dynamic analysis of laminated composite beams using higher order theories and finite elements", Compos. Struct., 73(3), 342-353. https://doi.org/10.1016/j.compstruct.2005.02.002.
DOI
|
32 |
Li, Y.H., Wang, L. and Yang, E.C. (2018), "Nonlinear dynamic responses of an axially moving laminated beam subjected to both blast and thermal loads", Int. J. Nonlin. Mech., 101, 56-67. https://doi.org/10.1016/j.ijnonlinmec.2018.02.007.
DOI
|
33 |
Mohanty, S.C., Dash, R.R. and Rout, T. (2015), "Vibration and dynamic stability of pre-twisted thick cantilever beam made of functionally graded material", Int. J. Struct. Stab. Dyn., 15(4), 1450058. https://doi.org/10.1142/S0219455414500588.
DOI
|
34 |
Nguyen, H.X., Nguyen, T.N., Abdel-Wahab, M., Bordas, S.P., Nguyen-Xuan, H. and Vo, T.P. (2017), "A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory", Comput. Meth. Appl. Mech. Eng., 313, 904-940. https://doi.org/10.1016/j.cma.2016.10.002.
DOI
|
35 |
Phung-Van, P., Thai, C.H., Nguyen-Xuan, H. and Abdel-Wahab, M. (2019a), "An isogeometric approach of static and free vibration analyses for porous FG nanoplates", Eur. J. Mech.-A/Solid., 78, 103851. https://doi.org/10.1016/j.euromechsol.2019.103851.
DOI
|
36 |
Phung-Van, P., Tran, L.V., Ferreira, A.J.M., Nguyen-Xuan, H. and Abdel-Wahab, M. (2017), "Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads", Nonlin. Dyn., 87(2), 879-894. https://doi.org/10.1007/s11071-016-3085-6.
DOI
|
37 |
Akbas, S.D. (2018a), "Nonlinear thermal displacements of laminated composite beams", Coupl. Syst. Mech., 7(6), 691-705. https://doi.org/10.12989/csm.2018.7.6.691.
DOI
|
38 |
Akbas, S.D. (2018b), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., 26(6), 733-743. http://dx.doi.org/10.12989/scs.2018.26.6.733.
DOI
|
39 |
Akbas, S.D. (2018c), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.
DOI
|
40 |
Phung-Van, P., Thai, C.H., Nguyen-Xuan, H. and Wahab, M.A. (2019b), "Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis", Compos. Part B: Eng., 164, 215-225. https://doi.org/10.1016/j.compositesb.2018.11.036.
DOI
|
41 |
Akbas, S.D. (2018g), "Large deflection analysis of a fiber reinforced composite beam", Steel Compos. Struct., 27(5), 567-576. http://dx.doi.org/10.12989/scs.2018.27.5.567.
DOI
|
42 |
Akbas, S.D. (2018d), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., 27(1), 59-70. https://doi.org/10.12989/was.2018.27.1.059.
DOI
|
43 |
Akbas, S.D. (2018e), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., 67(4), 337-346. http://dx.doi.org/10.12989/sem.2018.67.4.337.
DOI
|
44 |
Akbas, S.D. (2018f), "Geometrically nonlinear analysis of a laminated composite beam", Struct. Eng. Mech., 66(1), 27-36. http://dx.doi.org/10.12989/sem.2018.66.1.027.
DOI
|
45 |
Akbas, S.D. (2018h), "Investigation on free and forced vibration of a bi-material composite beam", J. Polytech.-Politeknik Dergisi, 21(1), 65-73. http://dx.doi.org/10.2339/politeknik.386841.
DOI
|
46 |
Akbas, S.D. (2019a), "Forced vibration analysis of functionally graded sandwich deep beams", Coupl. Syst. Mech., 8(3), 259-271. http://dx.doi.org/10.12989/csm.2019.8.3.259.
DOI
|
47 |
Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by nonlocal FSDT", Adv. Nano Res., 7(2), 89. http://dx.doi.org/10.12989/anr.2019.7.2.089.
DOI
|
48 |
Shariati, A., Ghabussi, A., Habibi, M., Safarpour, H., Safarpour, M., Tounsi, A. and Safa, M. (2020), "Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation", Thin Wall. Struct., 154, 106840. http://dx.doi.org/10.1016/j.tws.2020.106840.
DOI
|
49 |
Thanh, C.L., Tran, L.V., Vu-Huu, T. and Abdel-Wahab, M. (2019), "The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis", Comput. Meth. Appl. Mech. Eng., 350, 337-361. https://doi.org/10.1016/j.cma.2019.02.028.
DOI
|
50 |
Akbas, S.D. (2018i), "Investigation of static and vibration behaviors of a functionally graded orthotropic beam", Balikesir Universitesi Fen Bilimleri Enstitusu Dergisi, 1-14. https://doi.org/10.25092/baunfbed.343227.
DOI
|
51 |
Akbas, S.D. (2019b), "Hygro-thermal nonlinear analysis of a functionally graded beam", J. Appl. Comput. Mech., 5(2), 477-485. http://dx.doi.org/10.22055/JACM.2018.26819.1360.
DOI
|
52 |
Akbas, S.D. (2019c), "Hygrothermal post-buckling analysis of laminated composite beams", Int. J. Appl. Mech., 11(01), 1950009. https://doi.org/10.1142/S1758825119500091.
DOI
|
53 |
Akbas, S.D. (2019d), "Hygro-thermal post-buckling analysis of a functionally graded beam", Coupl. Syst. Mech., 8(5), 459-471. http://dx.doi.org/10.12989/csm.2019.8.5.459.
DOI
|
54 |
Yayli, M.O. (2019), "Free vibration analysis of a rotationally restrained (FG) nanotube", Microsyst. Technol., 25(10), 3723-3734. https://doi.org/10.1007/s00542-019-04307-4.
DOI
|
55 |
Tornabene, F., Fantuzzi, N., Viola, E. and Reddy, J.N. (2014), "Winkler-Pasternak foundation effect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels", Compos. Part B: Eng., 57, 269-296. https://doi.org/10.1016/j.compositesb.2013.06.020.
DOI
|
56 |
Vinson, J.R. and Sierakowski, R.L. (2008), The behavior of Structures Composed of Composite Materials, Springer, Netherlands. https://doi.org/10.1007/0-306-48414-5.
|
57 |
Wang, K., Inman, D.J. and Farrar, C.R. (2005), "Modeling and analysis of a cracked composite cantilever beam vibrating in coupled bending and torsion", J. Sound Vib., 284(1-2), 23-49. https://doi.org/10.1016/j.jsv.2004.06.027.
DOI
|
58 |
Zenkour, A.M., Allam, M.N.M. and Sobhy, M. (2010), "Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak's elastic foundations", Acta Mechanica, 212(3-4), 233-252. https://doi.org/10.1007/s00707-009-0252-6.
DOI
|