• Title/Summary/Keyword: problem Solving

Search Result 7,098, Processing Time 0.026 seconds

An Influence of Visualization on Geometric Problem Solving in the Elementary Mathematics (시각화가 초등기하문제해결에 미치는 영향)

  • Yun, Yea-Joo;Kang, Sin-Po;Kim, Sung-Joon
    • Journal of the Korean School Mathematics Society
    • /
    • v.13 no.4
    • /
    • pp.655-678
    • /
    • 2010
  • In the elementary mathematics, geometric education emphasize spatial sense and understandings of figures through development of intuitions in space. Especially space visualization is one of the factors which try conclusion with geometric problem solving. But studies about space visualization are limited to middle school geometric education, studies in elementary level haven't been done until now. Namely, discussions about elementary students' space visualization process and methods in plane or space figures is deficient in relation to geometric problem solving. This paper examines these aspects, especially in relation to plane and space problem solving in elementary levels. First, we investigate visualization methods for plane problem solving and space problem solving respectively, and analyse in diagram form how progress understanding of figures and visualization process. Next, we derive constituent factor on visualization process, and make a check errors which represented by difficulties in visualization process. Through these analysis, this paper aims at deriving an influence of visualization on geometric problem solving in the elementary mathematics.

  • PDF

A Study on Educational Application of Smart Devices for Enhancing the Effectiveness of Problem Solving Learning (문제해결학습의 효과성 증대를 위한 스마트기기의 교육적 활용에 관한 연구)

  • Kim, Meeyong
    • Journal of Internet Computing and Services
    • /
    • v.15 no.1
    • /
    • pp.143-156
    • /
    • 2014
  • The smart education has the goal of enhancing the capability of learners in the 21st century and especially address the improvement of the problem solving capability. This smart education based on the growth of smart devices and the effect of dramatical spread requires the ability of problem solving using the smart technology in accordance with time change. As the problem solving learning is a model used mainly for improving the capability of problem solving, this study develops the problem solving learning model focusing on the teaching-learning activity using the smart devices and also applies this model to the school field. As a result, the favorable response that using the smart devices is effective to the problem solving can be obtained. This study can contribute to achieve the goal of the smart education, and later can be effective to the successful smart education in the school field.

The Effect of the ASI Program on the Scientific Creative Problem Solving Skill and Science Learning Motivation of Science Gifted Students (ASI 프로그램이 과학영재 학생들의 과학 창의적 문제해결력과 과학 학습 동기에 미치는 효과)

  • Lee, Sang-Gyun;Kim, Soon-Shik
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.5 no.1
    • /
    • pp.31-41
    • /
    • 2012
  • This study investigates the effect of ASI program on the improvement of gifted students' scientific creative problem solving skill and science learning motivation. ASI developed by reflecting the characteristics of scientific inquiry. The study was aimed at Twenty elementary gifted students from C Gifted Education Program participated in the sixteen sessions of ASI curriculum from June 2010 to October 2010. First, we found that the ASP program is effective to improve the gifted students' scientific creative problem solving skill overall. Specifically, the ASI was effective in the sub-catagories of scientific creative problem solving skills such as 'fluency', 'flexibility', 'originality', and 'appropriateness'. However, there was no significant change in the sub-category of 'reliability' and 'elaborateness' Second, we found that the ASP program is effective to improve the gifted students' sscience learning motivation overall. Specifically, the ASI was effective in the sub-catagories of science problem solving skills such as 'intrinsic motivation', 'correlation with personal goal', 'self-determination', and 'fear of evaluation'. However, there was no significant change in the sub-category of 'extrinsic motivation' and 'self-efficacy'. summary, the ASI program was shown to be effective for improving their scientific creative problem solving skill and scientific learning motivation; This study implies that the ASI curriculum would be a effective tool to help gifted students to improve their ascientific creative problem solving skill and their motivation to learn science.

The effects of SW education applying CSCL-based design thinking on Creativity and Problem Solving Skills of Elementary School Students (CSCL 기반 디자인 사고를 적용한 SW교육이 초등학생의 창의성과 문제해결능력에 미치는 효과)

  • Seo, Youngho;Kim, Jonghoon
    • Journal of The Korean Association of Information Education
    • /
    • v.22 no.4
    • /
    • pp.427-438
    • /
    • 2018
  • The purpose of this study is to analyze the effect of SW education applying CSCL based design thinking on elementary school students' creativity and problem solving skills. The study was conducted on 28 elementary school students in grades 4,5,6 participated in J university-sponsored educational donation program during the winter break. A SW education program based on design thinking was developed and applied to experimental group. First, we conducted a pre-test to check creativity and problem solving skills. After that, SW education program applying CSCL-based design thinking was conducted for 42 hours. Finally, post-test was conducted to examine creativity and problem solving skills. As a creativity test tool, the TTCT pattern test forms A and B of Torrance were used and analyzed. As the problem solving skills test tool, the problem solving skills test for the elementary school students developed as a life-ability measurement tool were used and analyzed. As a result of the verification, it was found that SW education applying design thinking was effective in improving elementary school students' creativity and problem solving skills.

A Study on the Effectiveness of Algorithm Education Based on Problem-solving Learning (문제해결학습의 알고리즘 교육의 효과성 연구)

  • Lee, Youngseok
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.173-178
    • /
    • 2020
  • In the near future, as artificial intelligence and computing network technology develop, collaboration with artificial intelligence (AI) will become important. In an AI society, the ability to communicate and collaborate among people is an important element of talent. To do this, it is necessary to understand how artificial intelligence based on computer science works. An algorithmic education focused on problem solving and learning is efficient for computer science education. In this study, the results of an assessment of computational thinking at the beginning of the semester, a satisfaction survey at the end of the semester, and academic performance were compared and analyzed for 28 students who received algorithmic education focused on problem-solving learning. As a result of diagnosing students' computational thinking and problem-solving learning, teaching methods, lecture satisfaction, and other environmental factors, a correlation was found, and regression analysis confirmed that problem-solving learning had an effect on improving lecture satisfaction and computational thinking ability. For algorithmic education, if you pursue a problem-solving learning technique and a way to improve students' satisfaction, it will help students improve their problem-solving skills.

A Study on Development of Collaborative Problem Solving Prediction System Based on Deep Learning: Focusing on ICT Factors (딥러닝 기반 협력적 문제 해결력 예측 시스템 개발 연구: ICT 요인을 중심으로)

  • Lee, Youngho
    • Journal of The Korean Association of Information Education
    • /
    • v.22 no.1
    • /
    • pp.151-158
    • /
    • 2018
  • The purpose of this study is to develop a system for predicting students' collaborative problem solving ability based on the ICT factors of PISA 2015 that affect collaborative problem solving ability. The PISA 2015 computer-based collaborative problem-solving capability evaluation included 5,581 students in Korea. As a research method, correlation analysis was used to select meaningful variables. And the collaborative problem solving ability prediction model was created by using the deep learning method. As a result of the model generation, we were able to predict collaborative problem solving ability with about 95% accuracy for the test data set. Based on this model, a collaborative problem solving ability prediction system was designed and implemented. This research is expected to provide a new perspective on applying big data and artificial intelligence in decision making for ICT input and use in education.

Comparison of Chemistry Problem Solving Behaviors In the Aspects of Cognitive Developmental Level of Student and Context of Problem (학생의 인지발달 수준과 문제의 상황에 따른 화학 문제해결 행동 비교)

  • Noh, Tae-Hee;Jean, Kyung-Moon;Han, In-Ok;Kim, Chang-Min
    • Journal of The Korean Association For Science Education
    • /
    • v.16 no.4
    • /
    • pp.389-400
    • /
    • 1996
  • The purposes of this study were to analyze chemistry problem solving processes of middle school students and to compare their problem solving behaviors in the aspects of the cognitive developmental level of student, the success in problem solving, and the context of problem. Their failures in solving problems were also analyzed in the aspects of problem solving stage and prior knowledge. Forty-two students individually solved four problems regarding density and solubility using a think-aloud method. Students' responses were analyzed after intercoder agreement for analyzing problem-solving processes had been established to be 0.94. The results were as follows: 1. Most students solved chemistry problems following the stages of understanding, planning, and solving, while few exhibited the behaviors of the reviewing stage. There was also individual difference in the number of the stages repeated and their behaviors at each stage. 2. Most students were successful in understanding problems. However, unsuccessful and/or concrete-operational students had more difficulties in understanding problems than successful and/or formal-operational students, and students tended to have more difficulties in understanding problems in everyday contexts than in scientific contexts. 3. Successful and/or formal-operational students exhibited more behaviors of the planning stage than unsuccessful and/or concrete-operational students. Students showed more behaviors of the planning stage, but failed more at this stage, in everyday contexts than in scientific contexts. 4. Most students did not review their solutions. Successful and/or formal-operational students exhibited these behaviors more than unsuccessful and/or concrete-operational students. Students tended to exhibit the behaviors more in everyday contexts than in scientific contexts. 5. Many students failed to solve problems correctly due to the lack of prior knowledge and the inability to plan appropriately.

  • PDF

A Study on Social Intuitionist Model of Haidt in Mathematical Problem Solving (수학문제해결 측면에서의 Haidt의 사회적 직관주의 모델에 관한 고찰)

  • Choi, Kyounga;Kang, Moonbong
    • Journal of Educational Research in Mathematics
    • /
    • v.26 no.3
    • /
    • pp.565-581
    • /
    • 2016
  • Intuition in the mathematical problem solving has been stressed the importance with the logic because intuition is the cognition that give significant clue or idea to problem solving. Fischbein classified intuition by the origin; primary intuition and secondary intuition And he said the role of the personal experience and school education. Through these precedent research, we can understand the social influence. This study attempt to investigate social intuition model of Haidt, moral psychologist that has surfaced social property of intuition in terms of the mathematical problem solving. The major suggestions in problem solving and the education of intuition are followed. First, I can find the social property of intuition in the mathematical problem solving. Second, It is possible to make the mathematical problem solving model by transforming the social intuitionist model. Third, the role of teacher is important to give the meaningful experience for intuition to their students. Fourth, for reducing the errors caused by the coerciveness and globality of intuition, we need the education of checking their own intuition. In other words, we need intuition education emphasized on metacognition.

The Effects of Open-Ended Mathematical Problem Solving Learning on Mathematical Creativity and Attitudes of Elementary Students (개방형 문제해결학습이 초등학생들의 수학적 창의성 및 수학적 태도에 미치는 영향)

  • Seo, YoungMin;Park, Mangoo
    • Communications of Mathematical Education
    • /
    • v.35 no.3
    • /
    • pp.277-293
    • /
    • 2021
  • The purpose of this study was to find out how problem solving learning with open-ended mathematics problems for elementary school students affects their mathematical creativity and mathematical attitudes. To this end, 9 problem solving lessons with open-ended mathematics problems were conducted for 6th grade elementary school students in Seoul, The results were analyzed by using I-STATistics program to pre-and post- t-test. As a result of the study, problem solving learning with open-ended problems was effective in increasing mathematical creativity, especially in increasing flexibility and originality, which are sub-elements of creativity. In addition, problem solving learning with open-ended problems has helped improve mathematical attitudes and has been particularly effective in improving recognition needs and motivation among subfactors. In problem solving learning with open-ended problems, students were able to share various responses and expand their thoughts. Based on the results of the study, the researchers proposed that it is necessary to continue the development of quality materials and teacher training to utilize mathematical problem solving with open-ended problems at school sites.

An analysis of spatial reasoning ability and problem solving ability of elementary school students while solving ill-structured problems (초등학생들의 비구조화된 문제 해결 과정에서 나타나는 공간 추론 능력과 문제 해결 능력)

  • Choi, Jooyun;Kim, Min Kyeong
    • The Mathematical Education
    • /
    • v.60 no.2
    • /
    • pp.133-157
    • /
    • 2021
  • Ill-structured problems have drawn attention in that they can enhance problem-solving skills, which are essential in future societies. The purpose of this study is to analyze and evaluate students' spatial reasoning(Intrinsic-Static, Intrinsic-Dynamic, Extrinsic-Static, and Extrinsic-Dynamic reasoning) and problem solving abilities(understanding problems and exploring strategies, executing plans and reflecting, collaborative problem-solving, mathematical modeling) that appear in ill-structured problem-solving. To solve the research questions, two ill-structured problems based on the geometry domain were created and 11 lessons were given. The results are as follows. First, spatial reasoning ability of sixth-graders was mainly distributed at the mid-upper level. Students solved the extrinsic reasoning activities more easily than the intrinsic reasoning activities. Also, more analytical and higher level of spatial reasoning are shown when students applied functions of other mathematical domains, such as computation and measurement. This shows that geometric learning with high connectivity is valuable. Second, the 'problem-solving ability' was mainly distributed at the median level. A number of errors were found in the strategy exploration and the reflection processes. Also, students exchanged there opinion well, but the decision making was not. There were differences in participation and quality of interaction depending on the face-to-face and web-based environment. Furthermore, mathematical modeling element was generally performed successfully.