• Title/Summary/Keyword: probable rainfall

Search Result 118, Processing Time 0.029 seconds

The Estimation of Areal Reduction Factor(ARF) in Han-Rwer Basin (한강유역의 면적감소계수 산정)

  • Jeong, Jong-Ho;Na, Chang-Jin;Yun, Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.173-186
    • /
    • 2002
  • Rainfall-runoff model is usually used in estimating the design flood, and the most important elements in this model are probable rainfall and unit hydrograph. So, it is the most important step to estimate probable rainfall reasonably and exactly. If a basin area exceeds a certain scale, probable areal rainfall should be used as probable rainfall, but, Probable point- mean rainfall be usually used in Korea. Consequently, probable rainfall is used too high and unit hydrograph is used relatively too low. Thus the improvement is unavoidable. So, in this study, the parameters are proposed that transform the 1day, 2day rainfall to 24hr, 48hr rainfall, and areal rainfall data series are composed by using the same time rainfall data. Also, the areal reduction factor(ARF) is developed as the increase of area by the calculated probable point mean rainfall and probable areal rainfall by frequency analysis in Han-River basin. It can be the measure to easily transform probable point- mean rainfall to probable areal rainfall.

Estimation of Regional Probable Rainfall based on Climate Change Scenarios (기후변화 시나리오에 따른 지역별 확률강우량)

  • Kim, Young-Ho;Yeo, Chang-Geon;Seo, Geun-Soon;Song, Jai-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.29-35
    • /
    • 2011
  • This research proposes the suitable method for estimating the future probable rainfall based in 2100 on the observed rainfall data from main climate observation stations in Korea and the rainfall data from the A1B climate change scenario in the Korea Meteorological Administration. For all those, the frequency probable rainfall in 2100 was estimated by the relationship between average values of 24-hours annual maximum rainfalls and related parameters. Three methods to estimate it were introduced; First one is the regressive analysis method by parameters of probable distribution estimated by observed rainfall data. In the second method, parameters of probable distribution were estimated with the observed rainfall data. Also the rainfall data till 2100 were estimated by the A1B scenario of the Korea Meteorological Administration. Last method was that parameters of probable distribution and probable rainfall were estimated by the A1B scenario of the Korea Meteorological Administration. The estimated probable rainfall by the A1B scenario was smaller than the observed rainfall data, so it is required that the estimated probable rainfall was calibrated by the quantile mapping method. After that calibration, estimated probable rainfall data was averagely became approximate 2.3 to 3.0 times. When future probable rainfall was the estimated by only observed rainfall, estimated probable rainfall was overestimated. When future probable rainfall was estimated by the A1B scenario, although it was estimated by similar pattern with observed rainfall data, it frequently does not consider the regional characteristics. Comparing with average increased rate of 24-hours annual maximum rainfall and increased rate of probable rainfall estimated by three methods, optimal method of estimated future probable rainfall would be selected for considering climate change.

Derivation of Probable Rainfall Intensity Formulas at Inchon District (인천지방 확률강우강도식의 유도)

  • Choe, Gye-Un;An, Tae-Jin;Gwon, Yeong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.263-276
    • /
    • 2000
  • This paper is to derive the probable rainfall depths and the probable rainfall intensity formulas for Inchon Metropolitan district. The annual maximum rainfall data from 10 min. to 6 hours have been collected from the Inchon weather station. Eleven types of probability distribution are considered to estimate probable rainfall depths for 12 different storm durations at the Inchon Metropolitan district. Three tests including Chi-square, Kolmogorov-Smimov and Cramer Von Mises with the graphical analysis are adopted to select the best probability distribution. The probable rainfall intensity formulas are then determined by the least squares method using the trial and error approach. Five types of Talbot type, Sherman type, Japanese type, Unified type I, and Unified type II are considered to determine the best type for the Inchon rainfall intensity. The root mean squared errors are computed to compare the accuracy from the derived formulas. It has been suggested that the probable rainfall intensities having Unified type I for the short term duration should be the most reliable formulas by considering the root mean squared errors and the difference between computed probable rainfall depth and estimated probable rainfall depth.

  • PDF

A Review for Caluculation of the Formula for Probable Rainfall Intensities Following Return Periods in the Hydrological Statistics. -On Cheong-Ju district- (재현기간별 확률 향우강도식 산정에 관한 수문통계학적 고찰-청주 지방을 중심으로-)

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.3
    • /
    • pp.3848-3859
    • /
    • 1975
  • The author attempted to find most suitable formulas for probable rainfall intensities with analysis and consideration for characteristics of rainfall intensities according to the short and long period return periods at Cheong-Joo district. Above mentioned formulas induced by this study can be contributed to the credibility of runoff estimation for urban sewerage system, drainage works in small catchment area and embankment works in the rivers. The results of this study are summarized as follows: 1 Calculation values by Gumbel-Chow method were selected as a mean values for the calculation of probable rainfall intensities according to return periods in the short period. 2. Calculations for probable rainfall intensities for long period are based upon to the result by Iwai's method. Talbot type, {{{{I= {a} over {t+b} }}}} is confirmed as a most suitable formula for probable rainfall intensities among calculation methods in the short periods at Cheong-Joo district. 4. Specific coefficient method, I24=RN24${\beta}$N was selected as a means of calculation for suitable formulas of probable rainfall intensities according to return periods in case of long period. 5. Runoff estimation with high credibility by rational formula can be anticipated by establishment for the most suitable probable rainfall intensities at Cheong-Joo district.

  • PDF

Derivation of Probable Rainfall Intensity Formula at Masan District (마산지방 확률강우강도식의 유도)

  • Kim, Ji-Hong;Bae, Deg-Hyo
    • Journal of Wetlands Research
    • /
    • v.2 no.1
    • /
    • pp.49-58
    • /
    • 2000
  • The frequency analysis of annual maximum rainfall data and the derivation of probable rainfall intensity formula at Masan station are performed in this study. Based on the eight different rainfall duration data from 10 minutes to 24 hours, eight types of probability distribution (Gamma, Lognormal, Log-Pearson type III, GEV, Gumbel, Log-Gumbel, Weibull, and Wakeby distributions), three types of parameter estimation scheme (moment, maximum likelihood and probability weighted methods) and three types of goodness-of-fit test (${\chi}^2$, Kolmogorov-Smirnov and Cramer von Mises tests) were considered to find an appropriate probability distribution at Masan station. The Lognormal-2 distribution was selected and the probable rainfall intensity formula was derived by regression analysis. The derived formula can be used for estimating rainfall quantiles of the Masan vicinity areas with convenience and reliability in practice.

  • PDF

Derivation of Probable Rainfall Intensity Formula Using Genetic Algorithm (유전자 알고리즘을 이용한 확률강우강도식의 산정)

  • La, Chang-Jin;Kim, Joong-Hoon;Lee, Eun-Tai;Ahn, Won-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.103-115
    • /
    • 2001
  • The current procedure to design hydraulic structures in a small basin area is to estimate the probable rainfall depth using rainfall intensity formula. The estimation of probable rainfall depth has many uncertainties inherent with it. However, it has been inevitable to simplify the nonlinearity if the rainfall in practice. This study attend to address a method which can model the nonlinearity in order to derive better rainfall intensity formula for the estimation of probable rainfall depth. The results show that genetic algorithm is more reliable and accurate than trial-and-error method or nonlinear programming technique(Powell's method) in the derivation of the rainfall intensity formula.

  • PDF

Estimation of Annual Minimal Probable Precipitation Under Climate Change in Major Cities (기후변화에 따른 주요 도시의 연간 최소 확률강우량 추정)

  • Park, Kyoohong;Yu, Soonyu;Byambadorj, Elbegjargal
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.51-58
    • /
    • 2016
  • On account of the increase in water demand and climate change, droughts are in great concern for water resources planning and management. In this study, rainfall characteristics with stationary and non-stationary perspectives were analyzed using Weibull distribution model with 40-year records of annual minimum rainfall depth collected in major cities of Korea. As a result, the non-stationary minimum probable rainfall was expected to decrease, compared with the stationary probable rainfall. The reliability of ${\xi}_1$, a variable reflecting the decrease of the minimum rainfall depth due to climate change, in Wonju, Daegu, and Busan was over 90%, indicating the probability that the minimal rainfall depths in those city decrease is high.

A Unification of the Probable Rainfall Intensity Formula at Seoul (서울지방의 통합형 확률강우강도식)

  • Lee, Won Hwan;Park, Sang Deog
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.135-143
    • /
    • 1992
  • The probable rainfall depth is an important hydrologic design data in establishing the hydraulic engineering project at urban watershed. This study is to unificate the probable rainfall intensity formula at Seoul. The probable rainfall intensity formula at Seoul is basically formed by the types of Talbot, Sherman and Japanese. But these formulae may be unified to uniform type. The unified probable rainfall intensity formula is more applicable than that of the existing types at Seoul. Especially on the probable rainfall depth of total duration the application of unified formula general type is better than existing types. In this formula, values of n are decreasing with return period and increasing with rainfall duration, and values of coefficient, b, are decreasing with the increase of return period. The range of n varies from 0.55 to 0.60 for short duration, from 0.60 to 0.82 for long duration, and from 0.60 to 0.66 for total duration of probable rainfall depth.

  • PDF

A Derivation of the Typical Probable Rainfall Intensity Formula in KOREA (한국 대표확률강우강도식의 유도)

  • Lee, Won Hwan;Park, Sang Deog;Choi, Song Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.115-120
    • /
    • 1993
  • The study is to derive a typical probable rainfall intensity formula(TPRIF) by analyzing pre-issued probable rainfall intensity formulas (PPRIF) over principal rainfall observation stations, and to obtain the regional characteristics based on the rainfall patterns by evaluating probable rainfall amount. The conclusions are as follows. A TPRIF which integrates PPRIF with a single pattern is presented. In deriving probable rainfall intensity, the application of TPRIF was more excellent than that of PPRIF. The value of R24/Rl which is the dimensionless ratio for rainfall characteristics tends to be inversely proportionate to the regional coefficient n. By comparing these values, the whole country could be divided into about 5 regions. In these five regions, the short-duration rainfall intensity is dominant in inland areas but the long-duration rainfall intensity is dominant in East Sea areas.

  • PDF

Determination of Probable Rainfall Intensity Formulas for Designing Storm Sewer Systems at Incheon District (우수거 설계를 위한 인천지방에서의 확률강우강도식의 산정)

  • Ahn, Tae-Jin;Kim, Kyung-Sub
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.99-106
    • /
    • 1998
  • This paper presents a procedure for determining the design rainfall depth and the design rainfall intensity at Incheon city area in Korea. In this study the eight probability distributions are considered to estimate the probable rainfall depths for 11 different durations. The Kolmogorov - Smirnov test and the Chi-square test are adopted to test each distribution. The probable rainfall intensity formulas are then determined by i) the least squares (LS) method, ii) the least median squares (LMS) method, iii) the reweighted least squares method based on the LMS (RLS), and iv) the constrained regression (CR) model. The Talbot, the Sherman, the Japanese, and the Unified type are considered to determine the best type for the Incheon station. The root mean squared (RMS) errors are computed to test the formulas derived by four methods. It is found that the Unified type is the most reliable and that all methods presented herein are acceptable for determining the coefficients of rainfall intensity formulas from an engineering point of view.

  • PDF