• Title/Summary/Keyword: principal curvature vector field

Search Result 7, Processing Time 0.016 seconds

REAL HYPERSURFACES WITH ξ-PARALLEL RICCI TENSOR IN A COMPLEX SPACE FORM

  • Ahn, Seong-Soo;Han, Seung-Gook;Kim, Nam-Gil;Lee, Seong-Baek
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.4
    • /
    • pp.825-838
    • /
    • 1998
  • We prove that if a real hypersurface with constant mean curvature of a complex space form satisfying ▽$_{ξ/}$S = 0 and Sξ = $\sigma$ξ for a smooth function $\sigma$, then the structure vector field ξ is principal, where S denotes the Ricci tensor of the hypersurface.

  • PDF

REAL HYPERSURFACES SATISFYING ${\nabla}_{\xi}S$ = 0 OF A COMPLEX SPACE FORM

  • Kang, Eun-Hee;Ki, U-Hang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.819-835
    • /
    • 1998
  • The main purpose of this paper is to prove that if a real hypersurfaces M of a complex space form satisfies ${\nabla}_{\xi}S$=0 and $S{\xi}=\sigma\xi$ for some constant on $\sigma$ on M, then the structure vector field $\xi$ is principal, where S denotes the Ricci tensors of M.

  • PDF

REAL HYPERSURFACES OF THE JACOBI OPERATOR WITH RESPECT TO THE STRUCTURE VECTOR FIELD IN A COMPLEX SPACE FORM

  • AHN, SEONG-SOO
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.279-294
    • /
    • 2005
  • We study a real hypersurface M satisfying $L_{\xi}S=0\;and\;R_{\xi}S=SR_{\xi}$ in a complex hyperbolic space $H_n\mathbb{C}$, where S is the Ricci tensor of type (1,1) on M, $L_{\xi}\;and\;R_{\xi}$ denotes the operator of the Lie derivative and the Jacobi operator with respect to the structure vector field e respectively.

REAL HYPERSURFACES IN THE COMPLEX HYPERBOLIC QUADRIC WITH CYCLIC PARALLEL STRUCTURE JACOBI OPERATOR

  • Jin Hong Kim;Hyunjin Lee;Young Jin Suh
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.309-339
    • /
    • 2024
  • Let M be a real hypersurface in the complex hyperbolic quadric Qm*, m ≥ 3. The Riemannian curvature tensor field R of M allows us to define a symmetric Jacobi operator with respect to the Reeb vector field ξ, which is called the structure Jacobi operator Rξ = R( · , ξ)ξ ∈ End(TM). On the other hand, in [20], Semmelmann showed that the cyclic parallelism is equivalent to the Killing property regarding any symmetric tensor. Motivated by his result above, in this paper we consider the cyclic parallelism of the structure Jacobi operator Rξ for a real hypersurface M in the complex hyperbolic quadric Qm*. Furthermore, we give a complete classification of Hopf real hypersurfaces in Qm* with such a property.

THE JACOBI OPERATOR OF REAL HYPERSURFACES IN A COMPLEX SPACE FORM

  • Ki, U-Hang;Kim, He-Jin;Lee, An-Aye
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.3
    • /
    • pp.545-560
    • /
    • 1998
  • Let ø and A be denoted by the structure tensor field of type (1,1) and by the shape operator of a real hypersurface in a complex space form $M_{n}$ (c), c $\neq$ 0 respectively. The main purpose of this paper is to prove that if a real hypersurface in $M_{n}$ (c) satisfies $R_{ξ}$ øA = $AøR_{ξ}$, then the structure vector field ξ is principal, where $R_{ξ}$ / is the Jacobi operator with respect to ξ.

  • PDF

A CHARACTERIZATION OF CONCENTRIC HYPERSPHERES IN ℝn

  • Kim, Dong-Soo;Kim, Young Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.531-538
    • /
    • 2014
  • Concentric hyperspheres in the n-dimensional Euclidean space $\mathbb{R}^n$ are the level hypersurfaces of a radial function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$. The magnitude $||{\nabla}f||$ of the gradient of such a radial function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ is a function of the function f. We are interested in the converse problem. As a result, we show that if the magnitude of the gradient of a function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ with isolated critical points is a function of f itself, then f is either a radial function or a function of a linear function. That is, the level hypersurfaces are either concentric hyperspheres or parallel hyperplanes. As a corollary, we see that if the magnitude of a conservative vector field with isolated singularities on $\mathbb{R}^n$ is a function of its scalar potential, then either it is a central vector field or it has constant direction.

SLANT HELICES IN THE THREE-DIMENSIONAL SPHERE

  • Lucas, Pascual;Ortega-Yagues, Jose Antonio
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1331-1343
    • /
    • 2017
  • A curve ${\gamma}$ immersed in the three-dimensional sphere ${\mathbb{S}}^3$ is said to be a slant helix if there exists a Killing vector field V(s) with constant length along ${\gamma}$ and such that the angle between V and the principal normal is constant along ${\gamma}$. In this paper we characterize slant helices in ${\mathbb{S}}^3$ by means of a differential equation in the curvature ${\kappa}$ and the torsion ${\tau}$ of the curve. We define a helix surface in ${\mathbb{S}}^3$ and give a method to construct any helix surface. This method is based on the Kitagawa representation of flat surfaces in ${\mathbb{S}}^3$. Finally, we obtain a geometric approach to the problem of solving natural equations for slant helices in the three-dimensional sphere. We prove that the slant helices in ${\mathbb{S}}^3$ are exactly the geodesics of helix surfaces.