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REAL HYPERSURFACES SATISFYING
V¢S =0 OF A COMPLEX SPACE FORM

EUN-HEE KANG AND U-HANG K1

ABSTRACT. The main purpose of this paper is to prove that if a
real hypersurface M of a complex space form satisfies V¢S = 0 and
S¢ = ot for some constant on o on M, then the structure vector
field ¢ is principal, where S denotes the Ricci tensor of M.

1. Introduction

An n-dimensional complex space form M™(c) is a Kaehlerian man-
ifold of constant holomorphic sectional curvature ¢. A complete and
simply connected complex space forms are isometric to a complex pro-
jective space CP", a complex Euclidean space E™ or a complex hyper-
bolic space CH™ according as ¢ >0, c=0orc< 0.

Let M be a real hypersurface of M™(c), ¢ # 0. Then M has an
almost contact metric structure (¢, £, 7, g) induced from the Kaehlerian
metric and complex structure J of M™(¢). The structure vector £ is
said to be principal if Af = of, where A is the shape operator in
the direction of the unit normal C and a = n(A€). We denote by
V and S, the Levi-Civita connection with respect to the Riemannian
metric tensor g and the Ricci tensor of type (1,1) on M respectively.
There exist many studies about real hypersurfaces of M™(c). One of the
first studies is the classification of homogeneous real hypersurfaces of a
complex projective space CP™ by Takagi ([9]), who showed that these
hypersurfaces of CP™ could be divided into six types which are said to
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be of type A1, A2, B,C, D and FE, and in ([3]) Cecil-Ryan and Kimura
([6]) proved that they are realized as the tubes of constant radius over
Kaehlerian submanifolds.

THEOREM A ([6]). Let M be a connected real hypersurface of CP™.
Then M has constant principal curvatures and § is principal if and only
if M is locally congruent to one of the following;

(A1) a geodesic hypersphere (that is, a tube of radius r over a hyper-
plane CP™ '), where 0 <r < %,
(A2) a tube of radius r over a totally geodesic CP* (1 < k < n —2),
where 0 <r < 7,
(B) a tube of radius r over a complex quadric Q™" !, where 0 < r <
iy
4
(C) a tube of radius r over CP! x CP"7", where 0 < r < T and
n(> 5) is odd,
(D) a tube of radius r over a complex Grassmann Gg5(C), where
O0<r<fandn=09,
(E) a tube of radius r over a Hermitian symmetric space SO(10)/
U(5), where 0 <r < 7 and n = 15.

Recently Berndt ([2]) showed that all real hypersurfaces of a complex
hyperbolic space CH™ with constant principal curvatures are realized
as the tubes of constant radius over certain submanifolds when the
structure vector field £ is principal.

THEOREM B ([2]). Let M be a connected real hypersurface of CH™.
Then M has constant principal curvatures and € is principal curvature
vector if and only if M is locally congruent to one of the following;

(Ao) a horosphere in CH™,

(A1) a tube over a complex hyperbolic hyperplane CH™ !,

(Ag) a tube over a totally geodesic CH* (1 <k <n-2),
(B) a tube over a totally real hyperbolic space RH"™.

On the other hand, it is known that there is no real hypersurface with
parallel Ricci tensor V.S = 0 of M™(c), ¢ # 0 ({4]). Because of this fact
we know that there does not exist any Einstein real hypersurface of
M™(c), ¢ # 0. In such a situation, let us investigate the covariant
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Real hypersurfaces satisfying V¢S = 0

derivative of the Ricci tensor in M™(c), ¢ # 0, along the structure
vector { in such a way that V.5 =0.

In order to prove our resuit we prepare the following theorems with-
out proof:

THEOREM C ([5]). Let M be a real hypersurface of CH™. If the
structure vector § is principal and V¢S = 0, then M is Jocally congruent
to one of (Ag), (A;) and (Az).

THEOREM D ([8]). Let M be a real hypersurface in CP"(> 3) on
which & is a principal curvature vector and the focal map ¢, has con-
stant rank on M. If V.S = 0, then M is locally congruent to one of
(A1), (42), (B), (C), (D) and (E).

In this paper let us consider the condition that £ is an eigenvector
of the Ricci tensor S, which is more general notion than A§ = a€.

THEOREM. Let M be a real hypersurface of M™(c), ¢ # 0. If it
satisfies V¢S = 0 and S§ = o€ for some constant 0 on M, then £ is a
principal curvature vector.

All manifolds in this paper are assumed to be connected and of class
C* and the real hypersurfaces are supposed to be orientable.

1. Preliminaries

Let M be a real hypersurface of a complex n-dimensional complex
space form M™(c) of constant holomorphic sectional curvature ¢, and
let C be a unit normal vector field on a neighborhood of a point z in M.
We denote by V and V the Riemannian connection in M™(c) and in
M respectively. Then by the Gauss formula, we have the relationship
between V and V : For any vector fields X and Y on M

VxY = VxY +g(AX,Y)C,

where ¢ is the Riemannian metric tensor of M induced from that of
M™(c) and A denotes the shape operator with respect to C of M in
M™(¢). Furthermore, we have another equation which is called the
Weingarten formula:

VxC = —-AX.
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For any local vector field X on a neighborhood of z in M, the transfor-
mations of X and C under the complex structure J in M™(c) can be
given by

JX =¢X + n(X)C, JC=-¢,

where ¢ defines a skew-symmetric transformation on the tangent bundle
TM of M, where n and £ denote a l-form and a vector field on a
neighborhood of z in M respectively. Then it is seen that g(£, X) =
n(X). The set of tensors (¢,£,n,g) is called an almost contact metric
structure on M. They satisfy the following

¢*=—I+n®E ¢E=0, n(¢X)=0, n(f)=1,

where I denotes the identity transformation and ® the tensor product.

Furthermore the covariant derivatives of the structure tensors are given
by

(1.1) (Vx@)Y =n(Y)AX — g(AX,Y)§, Vx&=¢AX.

Since the ambient space is of constant holomorphic sectional curva-
ture ¢, equations of the Gauss and Codazzi are respectively given as
follows;

(1.2)
R(X,Y)Z = c{g(Y,2)X — 9(X, Z)Y + g(¢Y, Z)$X — g(¢X, Z)¢Y
— 29(¢X,Y)pZ} /4 + g(AY, Z)AX — g(AX, Z)AY,

(1.3) (VxA)Y = (VyA)X = c{n(X)gY —n(Y)$X — 29(¢X,Y )¢} /4,

where R denotes the Riemannian curvature tensor of M and V x A the
covariant derivative of the shape operator A with respect to X.

The Ricci tensor $’ of M is a tensor of type (0,2) given by S’(X,Y) =
tr{Z — R(Z,X)Y}. Also it may be regarded as the tensor of type (1,1)
and denoted by S : TM — TM satisfying S'(X,Y) = ¢(SX,Y). From
(1.3) we see that the Ricci tensor S of M is given by

(1.4) S=c{(2n+ 1) -3n®E}/4+hA - A%
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where we have put h = trA. Moreover, using (1.2) we get

(Vx8)Y = —3c{g(¢AX,Y )¢ + n(Y)pAX}/4

(1.5) + dh(X)AY + (kI — A)(Vx A)Y — (VxA)AY,

where d denotes the exterior differential.

In what follows, to write our formulas in convention forms, we denote
a = g(A&,§), B = g(A%€,¢) and VS by the gradient vector field of a
function f. Define a 1-form u by u(X) = g(U, X), where U = V€.
Because of properties of the almost contact metric structure and the
second equation of (1.1), we can get

(1.6) U = — A€ + of,

which shows that g(U,U) = 8 — a?. By the definition of U and the
second equation of (1.1), we easily see that

(17) g(VXEa U) = g(A2€7X) - O‘g(Ag’X)

On the other hand, differentiating (1.6) covariantly and making use
of (1.1), we find

(1'237)()( )9(AUY ) + 9(¢ X, VyU) =g((Vy A) X, ) — g(ApAX,Y)
- n1(X)9(Va,Y) + ag(44X,Y),
which enables us to obtain
(1.9) 9((VxA), &) = 29(AX,U) + g(Va, X).
By the definition of U, (1.1), (1.8) and (1.9) it is verified that

(1.10) VeU = 3¢AU + aAf — BE + ¢V
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2. Real hypersurfaces of M"(c) satisfying V,S =0

In what follows let M be a real hypersurface of M™(c), ¢ # 0 and
assume that the Ricci tensor § satisfies

(2.1) VeS =0,
and that
(2.2) S¢ = o¢

for some function 0. Then by (1.4) we have
(2.3) A%¢ = hAE + (B — ha)é,
where we have put
(2.4) B—ha=—-0+ %(n -1).
Differentiating (2.2) covariantly along M, we find
(Vx8)E+ SVx§ = (Xo)§ +0oVxE.
Because of (2.1) we then obtain
SU = do(§)€ + oU,
which together with (2.2) gives
(2.5) do(§) =0,

and hence SU = ogU. It follows that

(2.6) A%U = hAU + (ﬁ — ha + i—c) U,

where we have used (1.4) and (2.4).
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We put A€ = af + uW, where W is a unit vector field orthogonal to
&. Then from (1.6) we see that U = u¢W, and W is also orthogonal to
U. We assume that g # 0 on M, that is, £ is not a principal curvature
vector and we put = {p € M|u(p) # 0}. Then 2 is an open subset
of M and from now on we discuss our arguments on Q.

Making use of (2.3), we find
(2.7) AW = (h — )W + pé,
where p? = 3 — a? and hence

A’W — hAW = (8 — ha)W

because of p # 0.
If we differentiate (2.3) covariantly along Q and use the second equa-
tion of (1.1), then we get

(VxA)AE + A(VxA)E + A29AX — hAPAX

@8 dh(X) A& + MV xA)§ + d(B — ha)(X)E + (B — ha)pAX.

So, by using (1.9) and (2.3), we obtain

(2.9) o((Vx A)E, AE) = hg(AU, X) + ZdB(X),

which together with (1.3) gives

(2.10) o((VeA)AX, §) = hg(AU, X) - Su(X) + %dﬂ(X).
Replacing X by £ in(2.8) and using (1.9) and (2.10), we get

(2.11)  hAU +2(8 — ha + QU = dh(£)Aé — AVa + hVa — %Vﬂ.

If we take the inner product with (2.11) and £ and make use of (2.4)
and (2.5), then we can derive the equation

29(A¢, Va) = adh(§) + hda(§),
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which implies
(2.12) 2uda(W) = (h — 2a)da(€) + adh(§).
Since V¢S = 0, by replacing X by &, we have from (1.3) and (1.5),

2elu)n(Y) +u(Y a0} + ${g(AY; 6X) + g(AX, 9Y))

213) = dh(€)g(AX,Y) + hg(VxA)Y,€) + The(#X,Y)
- 9(AY, (VxA)§) - g(AX, (Vy 4)2).

By replacing X with A¢ in (2.13) and using (1.9) and (2.6), we find
<h2 + 28 — 2ha — Z) AU + {hﬁ— o+ Zc(h«l—a)} U
(2.14) )
= dh(£)A%¢ - 5AVﬂ — (8 - ha)Va.

Using (2.11) and (2.14) we have the following:

(2.15) gc(3AU — al) + A%Va — hAVa — (B ~ ha)Va = 0,

[

(AVSB — hVB) — h(AVa — hVa) + (8 — ha)Va

dh(£)(B — ha)€ + (2ha ~ 26+ E) AU

fi

(2.16)

5 3
—h2 Zch-= U
+ (hﬂ ha + —ch ca) .

Combining (2.11) and (2.15) with (2.16), we can verify that

. ~ {42V~ hAVS — (3 - ha)VB}

3 c
= ZC{(h +a)AU - (B+ Z)U}'
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Now, differentiating (2.7) covariantly along 2, we find
(Vx AW + AV xW = du(X)E+uV xE+dh—a)( X)W+ (h—a)VxW.
By taking the inner product in the last equation with W , we have
(2.18) H((Vx AW, W) = —2¢g(AX,U) + dh(X) — da(X).
because W is a unit vector field orthogonal to £&. We also have by ap-
plying §
(219)  ug((VxAW;€) = (h — 20)g(AU, X) + 3dB(X) - ada(X).

If we replace X by uW to the both sides of (2.13) and take account
of (1.3), (2.6) and (2.19), then we obtain
(2.20)

(h2—3ah+25—§)AU+{(h—2a) (ﬁ—ha+§-c) +§a}U

= pdh(§)AW — pAVpu — BVa + %aV,@.

On the other hand, we have from (1.3) and (2.8)
(2.21)
H=uXn(¥) + u(Y)n(X)} + 5 (h - 2)g(@Y, X)
— g(A%0AX,Y) + g(A2$AY, X) + 2hg(pAX, AY)
~ (B — ha){g(¢AY, X) — g(¢AX,Y)}
= g(AY,(Vx A)¢) — 9(AX, (Vy A)E) + dh(Y)g(AE, X)
— dh(X)g(AL,Y) + d(8 — ha)(Y)n(X) — d(B — ha)(X)n(Y).
Thus we get

(2.22)
(4,8 —4ha+ h? + 2) AU + (gca — gch> U
= udh(€) AW — pdh(W)AE - u{dB(W) — hde(W) — adh(W)}€

+ -;_(za ~ h)VA + (ha — 28)Va + (8 — a*)Vh,
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where we have used (1.9), (2.6), (2.7), (2.19) and (2.20), which implies
3 , 3 5
= (46~ 4ha+h?+3) AU+ (Eca— Zch) U
- %(m — h){A® —hA - (8 — ha)[}V3
+ (ah — 28){A% —hA — (8 — ha)[}Va

+ (B — a®){A? — hA — (B — ha)I}Vh.
Thus, if we take account of (2.15) and (2.17), then we obtain

(2.23)
(8 —a?){A? —hA — (8- ha)I}Vh

_3 2 ¢ 3.2 _
= 4c{(—2ﬁ+2a +4> AU + (h — ha* + ca ch)U},
which enables us to obtain

(2.24) 9(U, U)dh(U) = (—25 + 202 + g) 9(AU,U)
+ (kB — ha? + ca — ch)g(U,U),

because of (2.6).

3. The case that ¢ is constant

In this section, we assume that M is a real hypersurface of M"(c),
¢ # 0 satisfying (2.1) and (2.2) with 0 = constant. Then by (2.4) we
have

(3.1,) Vg = hVa + aVh.

Thus, using (2.15), (2.17) and (2.23) we obtain

((3;3 ~ha® — i—ca) AU = {Z(ﬂ - a?) (ha -6~ %c) + ¢(B ~ ha)}U.
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Applying (2.14) by ¢ and making use of (3.1), we find
udB(W) = (28 — e*)dh(€) + (ah — 28)da(€),

or using (2.12) and (3.1),
(3.3)

padh(W) = (w —a? - %ah) dh(€) + <2ah —26— %h2) do(£).

Now, let Q; be the set of points in Q such that U is not principal.
Then we have on 4

(3.4) h(B-0?) = ga, 2(8 — a?) (ha — B - %c) + (B — ha) =0.

Differentiation the second equation of (3.4) along Q4 gives Vf—2aVa =
0, which shows that (h — 2a)Va+ aVh = 0.

In a similar way, from the first equation of (3.4), we have (3 —
a?)Vh = 7Va on ;. Thus by virtue of these two equations we have
(B—a?)(2a~h)Va = $aVe. Therefore we have Va = 0 on Q; because
of (3.4). So that (2.15) implies 3AU = aU on ©;. This can’t occur in
Q,.

Hence (3.2) means AU = AU on 2, and so we have

{h(ﬁ —a?) - ga} A =2(8~ a?) (ha —B- Zc) + (B - ha).
By using AU = AU and (2.6), we find
(3.5) M=A+8—-ha+ §c.

4

Therefore, the last two equations imply
(3.6) A(h —20)(8 — o®) = 2(4ha — 48— a)).
Thus we have

829



Eun-Hee Kang and U-Hang Ki

LEMMA 1. AU = MU on 2, where ) satisfies (3.5) and (3.6).
From this lemma and (2.24), it follows that

37)  dh(U) = (ﬂ Py 2) (h—23) + §(4a —A—3h).

Therefore we obtain, by using that o is constant and with (2.15), (2.17)
and Lemma 1,

(3.8) adh(U) = (hA — 20\ + 28— ha + g) (8 — a?).
The covariant differentiation of (3.5) gives
(3.9) (2A — h)VA = AVh.

We notice here that A 3 0 on 2 because of (3.5) and (3.6). So a # 0
on § since we have (2.15). Consequently, we can, using (3.6), (3.7) and
(3.9), verify that 2 A — h # 0 on Q.

On the other hand, if we make use of (2.13) and Lemma 1, then we
get

(3.10)
(h=Xg((VxA)U,§) — g(AX, (Vy A)E)

= eq(U, U)n(X) + Su(r — Rw(X) ~ Sug(AX, W) — Ah(u(X).
In a same way, from (2.21) and (3.5) we have
A((Vx AU, €) - 9(AX, (Vu A)E) + dh(U)g(AX, &)
= S(U,U(X) = S cps(X) — Seug(AX, ).
From the above two equations we obtain
(h — 2)g((V x A)U,€) — dh(U)g(AX, &)
B1) = 39UUMX) + Sug(AX, W) + 5(h - a)pw(X)
+ 20 = hyw(X) — Adh(§)u(X).
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If we differentiate AU = AU covariantly along 2, then we get
(3.12) (VxAU + A(VxU) =dA\X)U + AVxU,
which by taking the inner product with £ and using (1.3) and (1.10)
implies
(3.13)
¢
9(Vx AW, §) = dAEu(X) - Juw(X) ~ 9(AX, ¢Va) — Ag(¢X, Va)
+ u(3A — a){g(AX, W) — Aw(X)}
+ (8- o®){g(AX,€) - M(X)}.

Combining (3.11) with (3.13) and taking account of (3.5) and (3.7), we
have

(3.14) ApVa + AoVa = —u(3X — a)(AW — AW).
Thus (3.13) turns out to be
(3.15)

9(VXAU,€) = dNEu(X) + (8~ a?){g(AX, &) - Xn(X)} — Juw(X).

Since Vx¢& = ¢AX and U = V£, we see that VxU = ¢(VxA)¢ +
aAX — g(A%X,€)¢ . Replacing X by U and using (1.3) and (3.15), we
have

(316) VU =-Ah—a)U + (aX+ 8 —a®+ Z) U — udA(E)W.
On the other hand we find from (3.12)

ZI(Y)#X —n(X)Y }U + g(AX, VyU) = g(AY, VxU)

= (Y )u(X) — AAX)u(Y) + M(Vyu)(X) - (Vxu)(V)},
which shows that by using (3.16) and Lemma 1,

udA(E)(AW — AW) = g(U,U)VA — dA(U)U.

It follows that
(3.17) pdh(E)(AW — A\W) = (8 — &®)Vh — dh(U)U
because of (3.9). Therefore we have
(3.18) udh(W) = (h — a — A)dh(§).
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We now prove
LEMMA 2. dh(¢) = 0 and da{§) =0 on Q.
Proof. From p? = 3 — o2 and (3.1) we have

2uVp = aVh+ (h—2a)Vo. 0

Differentiating (3.6) covariantly along Q and making use of (3.9),
we find

2A(h — 2NV — 2uZAV A = —E(AVQ +aVh).

As is already remarked that A(h —2)) # 0 on Q, the last two equations
imply that

(3.19) zVh+yVa =0,
where we have put

{ z = alh—2))? + 2\u — o,
y=(h—2XN{(h—2X\)(h - 2a) + £}

So we have {ya — z(2X\ — h)}dh(€) = 0 because of (2.12) and (3.18).
Let Qs be the set of points at which dh(€) # 0 in Q. Suppose that
)2 is not empty. Then we have ya = z(2\ — h) on Q. Therefore we
have £(Ah + 28 — 2ha + 2¢) = 0 on Qg because of (2.15), (2.17), (3.1),
(3.5), (3.9) and (3.19). Let Q3 = {p € Qa|z(p) # 0}. Suppose that Q3
is nonvoid. Then we have A + 23 — 2ha + 2¢ = 0 on Q3. So we have
Mh = constant because of (2.4). From this fact and (3.9) we see that
Vh = 0 on 13, a contradiction. Therefore z=0 on €2 and hence y=0
because a # 0 on 2. Thus (3.19) leads to

(3.20) (h = 22)(h — 2a) + ZC; =0,
which enables us to obtain
3
(3.21) (2A — h)?Va = (h2 + 26— 3ah + 50) Vh,
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on (2. If we take the inner product with W and make use of (3.18),
then we get

pda(W) = (h — a — Nda(£)
because 2A — h # 0 on Q, or use (2.12)

(3.22) adh(&) = (h — 2\)da(€)

on §22. Therefore we have da(¢) # 0 on 2.

Applying £ to (3.21) and using (3.20) and (3.22), we find A2 —aA—§ =
0 on Q. From this and (3.9) and (3.22) we see that A = 0 on (22, a
contradiction. This is impossible on Q2. Thus dh({) = 0 on €. So (3.18)
means dh(W) = 0 and hence {(h —2a)? + 4(8 — a2)}da(£) = 0 because
of (3.3). Therefore da(€) = 0 on §2. This completes the proof of Lemma
2.

According to Lemma 2, (3.17) turns out to be
g(U,U)Vh = dh(U)U,
or using (3.8),
(3.23) aVh = (h)\ — 20\ + 26 — ha + g) U.
By differentiating (3.23) covariantly, we have

da(Y)dh(X) - da(X)dh(Y)
— {(h = 20)dA(Y) + (A + a)dh(Y) + (h — 2X)da(Y ) }u(X)
+ {(h = 20)dA(X) + (A + a)dh(X) + (h — 2)\)da(X) }u(Y)

(h)\ 20\ + 20 — ha + < ){(Vyu) — (Vxu)Y}
= 0.

Hence we have
(hA 20\ + 26 — ha + ) du(€, X) =
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for any vector field X because of (3.8) and Lemma 2. Let My = {p €
Q)du(&, X)(p) # 0}. Suppose that My is not empty. Then on a compo-
nent C of My we have

(3.24) hA — 2a) + 28 — ha + % = 0.
Thus (3.23) implies VA = 0 so that (3.7) becomes

- =S SR —e(h—a) =
(3.25) (h —2)) (ﬂ a 4) T —h)—c(h—a) =0

on C. By means of (3.9), we see that ) is constant on C. By using (3.1)

and (3.24) it is seen that o is constant on C. Thus (2.15) and (2.17)

turn out to be 3A = @, (h + a)X = B+ £ on C respectively . So these

facts, (3.5) and (3.25) will produce a contradiction. Hence Mj is void.
Therefore we have

LEMMA 3. du(§, X) = 0 for any vector field X on .

4. Proof of Theorem

Using Lemma 3 and (2.7) and the definition of U we have
VeU = —p{pf + (h — )W}
Hence, from (1.10) and Lemma 1 we see that
(3.26) plh — )W = —p(a — AW - ¢Va,

which implies p?(h — @) = —p2(a — 3A) + da(U). From (2.6), (2.15)
and Lemma 1 we can get h = a. Thus it is clear that

dVa = p(3X — a)W.
Accordingly we obtain
(3.27) Va=—(3\-a)U.
Substituting k = « into (3.5), we have A\? = 3 — a? + Aa + %c and
comparing (3.23) with (3.27), we get
ﬁ—a2+§+a)\=0.

From these two equations, (3.9) and (3.27) we deduce a contradic-
tion. Hence we conclude that € is empty. It completes the proof of
main theorem.
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