• Title/Summary/Keyword: prime ideals

Search Result 204, Processing Time 0.019 seconds

PRIME BI-IDEALS OF GROUPOIDS

  • Lee, S.K.
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.217-221
    • /
    • 2005
  • Kehayopulu and Tsingelis [2] studied prime ideals of groupoids. Also the author studied prime left (right) ideals of groupoids. In this paper, we give some results on prime bi-ideals of groupoids.

  • PDF

STRONGLY PRIME FUZZY IDEALS AND RELATED FUZZY IDEALS IN AN INTEGRAL DOMAIN

  • Kim, Myeong Og;Kim, Hwankoo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.333-351
    • /
    • 2009
  • We introduce the concepts of strongly prime fuzzy ideals, powerful fuzzy ideals, strongly primary fuzzy ideals, and pseudo-strongly prime fuzzy ideals of an integral domain R and we provide characterizations of pseudo-valuation domains, almost pseudo-valuation domains, and pseudo-almost valuation domains in terms of these fuzzy ideals.

  • PDF

One-sided Prime Ideals in Semirings

  • Shabir, Muhammad;Iqbal, Muhammad Sohail
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.4
    • /
    • pp.473-480
    • /
    • 2007
  • In this paper we define prime right ideals of semirings and prove that if every right ideal of a semiring R is prime then R is weakly regular. We also prove that if the set of right ideals of R is totally ordered then every right ideal of R is prime if and only if R is right weakly regular. Moreover in this paper we also define prime subsemimodule (generalizing the concept of prime right ideals) of an R-semimodule. We prove that if a subsemimodule K of an R-semimodule M is prime then $A_K(M)$ is also a prime ideal of R.

  • PDF

ON WEAKLY (m, n)-PRIME IDEALS OF COMMUTATIVE RINGS

  • Hani A. Khashan;Ece Yetkin Celikel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.717-734
    • /
    • 2024
  • Let R be a commutative ring with identity and m, n be positive integers. In this paper, we introduce the class of weakly (m, n)-prime ideals generalizing (m, n)-prime and weakly (m, n)-closed ideals. A proper ideal I of R is called weakly (m, n)-prime if for a, b ∈ R, 0 ≠ amb ∈ I implies either an ∈ I or b ∈ I. We justify several properties and characterizations of weakly (m, n)-prime ideals with many supporting examples. Furthermore, we investigate weakly (m, n)-prime ideals under various contexts of constructions such as direct products, localizations and homomorphic images. Finally, we discuss the behaviour of this class of ideals in idealization and amalgamated rings.

zJ-Ideals and Strongly Prime Ideals in Posets

  • John, Catherine Grace;Elavarasan, Balasubramanian
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.385-391
    • /
    • 2017
  • In this paper, we study the notion of $z^J$ - ideals of posets and explore the various properties of $z^J$-ideals in posets. The relations between topological space on Sspec(P), the set $I_Q=\{x{\in}P:L(x,y){\subseteq}I\text{ for some }y{\in}P{\backslash}Q\}$ for an ideal I and a strongly prime ideal Q of P and $z^J$-ideals are discussed in poset P.

M-SYSTEM AND N-SYSTEM IN PO-SEMIGROUPS

  • Lee, Sang-Keun
    • East Asian mathematical journal
    • /
    • v.19 no.2
    • /
    • pp.233-240
    • /
    • 2003
  • Xie and Wu introduced an m-system in a po-semigroup. Kehayopulu gave characterizations of weakly prime ideals of po-semigroups and Lee and Kwon add two characterizations for weakly prime ideals. In this paper, we give a characterization of weakly prime ideals and a characterization of weakly semi-prime ideals in po-semigroups using m-system and n-system, respectively

  • PDF

WEAKLY PRIME IDEALS IN COMMUTATIVE SEMIGROUPS

  • Anderson, D.D.;Chun, Sangmin;Juett, Jason R.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.829-839
    • /
    • 2019
  • Let S be a commutative semigroup with 0 and 1. A proper ideal P of S is weakly prime if for $a,\;b{\in}S$, $0{\neq}ab{\in}P$ implies $a{\in}P$ or $b{\in}P$. We investigate weakly prime ideals and related ideals of S. We also relate weakly prime principal ideals to unique factorization in commutative semigroups.

ON PSEUDO 2-PRIME IDEALS AND ALMOST VALUATION DOMAINS

  • Koc, Suat
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.897-908
    • /
    • 2021
  • In this paper, we introduce the notion of pseudo 2-prime ideals in commutative rings. Let R be a commutative ring with a nonzero identity. A proper ideal P of R is said to be a pseudo 2-prime ideal if whenever xy ∈ P for some x, y ∈ R, then x2n ∈ Pn or y2n ∈ Pn for some n ∈ ℕ. Various examples and properties of pseudo 2-prime ideals are given. We also characterize pseudo 2-prime ideals of PID's and von Neumann regular rings. Finally, we use pseudo 2-prime ideals to characterize almost valuation domains (AV-domains).

PRIME M-IDEALS, M-PRIME SUBMODULES, M-PRIME RADICAL AND M-BAER'S LOWER NILRADICAL OF MODULES

  • Beachy, John A.;Behboodi, Mahmood;Yazdi, Faezeh
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1271-1290
    • /
    • 2013
  • Let M be a fixed left R-module. For a left R-module X, we introduce the notion of M-prime (resp. M-semiprime) submodule of X such that in the case M=R, it coincides with prime (resp. semiprime) submodule of X. Other concepts encountered in the general theory are M-$m$-system sets, M-$n$-system sets, M-prime radical and M-Baer's lower nilradical of modules. Relationships between these concepts and basic properties are established. In particular, we identify certain submodules of M, called "primeM-ideals", that play a role analogous to that of prime (two-sided) ideals in the ring R. Using this definition, we show that if M satisfies condition H (defined later) and $Hom_R(M,X){\neq}0$ for all modules X in the category ${\sigma}[M]$, then there is a one-to-one correspondence between isomorphism classes of indecomposable M-injective modules in ${\sigma}[M]$ and prime M-ideals of M. Also, we investigate the prime M-ideals, M-prime submodules and M-prime radical of Artinian modules.