
Bull. Korean Math. Soc. 56 (2019), No. 4, pp. 829–839

https://doi.org/10.4134/BKMS.b180635

pISSN: 1015-8634 / eISSN: 2234-3016

WEAKLY PRIME IDEALS IN COMMUTATIVE

SEMIGROUPS

D. D. Anderson, Sangmin Chun, and Jason R. Juett

Abstract. Let S be a commutative semigroup with 0 and 1. A proper

ideal P of S is weakly prime if for a, b ∈ S, 0 6= ab ∈ P implies a ∈ P
or b ∈ P . We investigate weakly prime ideals and related ideals of S.

We also relate weakly prime principal ideals to unique factorization in
commutative semigroups.

The purpose of this note is to investigate weakly prime ideals and related
ideals in commutative semigroups. We will also discuss the relationship between
weakly prime principal ideals and unique factorization. Here all commutative
semigroups will be nontrivial, multiplicative, and have both 0 and 1. Similarly,
all rings will be commutative with identity. Let S be a commutative semigroup.
Recall that an ideal of S is a nonempty subset I of S with si ∈ I for s ∈ S
and i ∈ I. Hence 0 is an ideal (we use 0 to denote both the element 0 and
the ideal {0}) and the set of nonunits of S forms the unique maximal ideal of
S. A union or intersection of a nonempty family of ideals is again an ideal.
A proper ideal P of S is prime if ab ∈ P , a, b,∈ S, implies a ∈ P or b ∈ P .
This is equivalent to AB ⊆ P implies A ⊆ P or B ⊆ P , where A and B are
ideals of S. (When we write AB we mean the ideal {ab | a ∈ A, b ∈ B}.) An
arbitrary union of prime ideals is again a prime ideal. For ideals A and B of
S, we define (A : B) to be the ideal {x ∈ S | xB ⊆ A} and for x ∈ S we
abbreviate (A : x) = (A : (x)). For a survey of the ideal theory of commutative
semigroups the reader is referred to [1].

Let S be a commutative semigroup. A proper ideal P of S is weakly prime
if 0 6= ab ∈ P , a, b ∈ S, implies a ∈ P or b ∈ P . Thus 0 and prime ideals
are weakly prime. This generalizes the notion of a weakly prime ideal in a
commutative ring which was studied in [2]. We are particularly interested in
which properties of weakly prime ideals in commutative rings extend to weakly
prime ideals in commutative semigroups.

We first state some results from [2] about weakly prime ideals in commutative
rings.
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Theorem 1 ([2, Theorem 3]). For a proper ideal P of a commutative ring R,
the following statements are equivalent.

(1) P is weakly prime, that is, 0 6= xy ∈ P , x, y ∈ R, implies x ∈ P or
y ∈ P .

(2) For x ∈ R \ P , (P : x) = P ∪ (0 : x).
(3) For x ∈ R \ P , (P : x) = P or (P : x) = (0 : x).
(4) For ideals A and B of R with 0 6= AB ⊆ P , either A ⊆ P or B ⊆ P .

We note that in Theorem 1(4), like all other times that we will refer to a
product of ring ideals, it does not make a difference whether we interpret the
product as defined above or as the usual product of ring ideals.

Theorem 2. Let R be a commutative ring and P a weakly prime ideal of R.

(1) ([2, Theorem 1, Corollary 2, Theorem 4]) If P is not prime, then P 2 =

0, so P ⊆
√

0. In fact, P
√

0 = 0. So either P ⊆
√

0 or
√

0 ⊆ P . If
P (

√
0, P is not prime while if

√
0 ( P , P is prime.

(2) ([2, Theorem 7]) If R is not indecomposable, then either P = 0 or P is
prime.

With the four conditions in Theorem 1 in mind we make the following defi-
nition.

Definition 3. Let S be a commutative semigroup and P a proper ideal of S.
Then P satisfies

(WP1) if P is weakly prime, that is, 0 6= xy ∈ P , x, y ∈ S, implies x ∈ P or
y ∈ P ,

(WP2) if for x ∈ S \ P , (P : x) = P ∪ (0 : x),
(WP3) if for x ∈ S \ P , (P : x) = P or (P : x) = (0 : x), and
(WP4) if for ideals A and B of S with 0 6= AB ⊆ P , either A ⊆ P or B ⊆ P .

The following two results illustrate the relationships between the above prop-
erties.

Proposition 4. Let S be a commutative semigroup and P a proper ideal of S.

(1) P satisfies (WP3) if and only if for each x ∈ S and (2-generated) ideal
B, 0 6= (x)B ⊆ P ⇒ (x) ⊆ P or B ⊆ P .

(2) P satisfies (WP4) if and only if for each x, y ∈ S and (2-generated)
ideal B, 0 6= (x, y)B ⊆ P ⇒ (x, y) ⊆ P or B ⊆ P .

Proof. (1) (⇒) Suppose 0 6= (x)B ⊆ P and (x) * P . Then (P : x) 6= (0 : x),
hence P = (P : x) ⊇ B. (⇐) Suppose x ∈ S \ P and (P : x) 6= (0 : x). Then
0 6= xy ∈ P for some y ∈ S. For each z ∈ (P : x), 0 6= (x)(y, z) ⊆ P , hence
(y, z) ⊆ P . Therefore (P : x) = P .

(2) (⇒) Clear. (⇐) Suppose 0 6= AB ⊆ P and A * P . Say x ∈ A \ P . Pick
y ∈ A and z ∈ B with yz 6= 0. For each b ∈ B, 0 6= (x, y)(b, z) ⊆ P , hence
(b, z) ⊆ P . Thus B ⊆ P . �
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Note that in Proposition 4, we can equivalently replace (x), (x, y), and B
with {x}, {x, y}, and a subset of S (with cardinality at most 2), respectively.

Theorem 5. Let S be a commutative semigroup. Then (WP4) ⇒ (WP3) ⇒
(WP2) ⇔ (WP1).

Proof. (WP4) ⇒ (WP3) ⇒ (WP1) Follows from Proposition 4. (WP1) ⇒
(WP2) Let x ∈ S \P . Suppose y ∈ (P : x), so xy ∈ P . Then either 0 6= xy ∈ P
in which case y ∈ P since P is weakly prime, or 0 = xy in which case y ∈ (0 : x).
So (P : x) ⊆ P ∪(0 : x) and the other inclusion always holds. (WP2)⇒ (WP1)
Suppose that 0 6= xy ∈ P . If x /∈ P , then (P : x) = P ∪ (0 : x) so 0 6= xy forces
y ∈ (P : x) \ (0 : x) and hence y ∈ P . �

Example 6 ((WP3) ; (WP4) or contained in
√

0). Let E be the commutative
semigroup with generators x and y and relations xy = y2 = 0. For 1 ≤ i ≤ n,
let En (resp., En,i) be the commutative semigroup with generators x and y and
relations xy = y2 = 0 and xn+1 = 0 (resp., xn+1 = xi). (Equivalently, we can
define E and En as Rees quotients E = F/(xy, y2) and En = F/(xy, y2, xn+1),
where F is the free commutative semigroup with generators x and y. We will
further discuss Rees quotients below.) Then P = (x) is weakly prime but not
prime. We have P 2 6= 0 in E, En,i, and En (n ≥ 2). Now P ( (x, y) = M , the
maximal ideal of S, but M2 ⊆ P with M2 6= 0 for E,En,i, and En (n ≥ 2).
Clearly (P : 1) = P and (P : y) = (x, y) = (0 : y). So P of E,En,i, and En
(n ≥ 2) satisfies (WP3) but not (WP4) and P 2 6= 0. In fact, P of E is not

even contained in
√

0.

Example 7 ((WP2) ; (WP3)). Let P = (x, y) in the semigroup S = {0, 1,
x, y, z, xz, yz} where x2 = y2 = xy = z2 = 0. So P is weakly prime. Now for
z ∈ S \ P , (P : z) = (x, y, z) 6= P and (0 : z) = (z) 6= P . So P satisfies (WP2)
but not (WP3).

We note that (WP2) and (WP3) are equivalent for ring ideals for a rather
trivial reason: if a union I ∪ J of two ring ideals is a ring ideal, then I ∪ J = I
or J . However, any nonempty union of semigroup ideals is a semigroup ideal.

Theorem 8. Let S be a commutative semigroup and P a proper ideal of S.
Then the following are equivalent.

(1) P satisfies (WP4).
(2) P satisfies (WP3) and P 2 = 0 if P is not prime.

Proof. (1) ⇒ (2) By Theorem 5, (WP4) ⇒ (WP3). Suppose that P 2 6= 0, so
there are p, q ∈ P with pq 6= 0. Let a, b ∈ S with ab ∈ P . Put A = (a, p)
and B = (b, q); so A and B are ideals of S with 0 6= (pq) ⊆ AB ⊆ P . Hence
a ∈ A ⊆ P or b ∈ B ⊆ P , so P is prime. (2) ⇒ (1) Suppose that A and B are
ideals of S with 0 6= AB ⊆ P . If P is prime, A ⊆ P or B ⊆ P . So suppose
that P is not prime. Then P 2 = 0. Now 0 6= AB gives a ∈ A and b ∈ B with
0 6= ab. Since P 2 = 0 we must have at least one of a or b not in P , say b /∈ P .
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Then (P : b) = P or (P : b) = (0 : b). But a ∈ (P : b) \ (0 : b), so (P : b) = P .
Thus Ab ⊆ AB ⊆ P gives A ⊆ (P : b) = P . �

However, note that Example 7 shows that (WP2) +P 2 = 0 ; (WP3).

Theorem 9. Let S1 and S2 be commutative semigroups. The nonzero (weakly)
prime ideals of S1×S2 are P1×S2, S1×P2, and (P1×S2)∪(S1×P2) where P1 and
P2 are prime ideals of S1 and S2, respectively. Hence a nonzero weakly prime
ideal of a decomposable commutative semigroup is prime, so (WP1)-(WP4) are
equivalent in a decomposable commutative semigroup.

Proof. Let P be a nonzero weakly prime ideal of S1×S2. Let (0, 0) 6= (a, b) ∈ P ,
so (a, 1)(1, b) = (a, b) ∈ P . Then (a, 1) ∈ P or (1, b) ∈ P and hence (a)×S2 ⊆ P
or S1×(b) ⊆ P . So P =

(⋃
(a,1)∈P (a)× S2

)
∪
(⋃

(1,b)∈P S1 × (b)
)

= (P1×S2)∪
(S1×P2) where P1 = {a ∈ S1 | (a, 1) ∈ P} and P2 = {b ∈ S2 | (1, b) ∈ P}. Now
P1 and P2 are either empty or ideals of S1 and S2, respectively. Suppose P1 6= ∅.
Let xy ∈ P1, x, y ∈ S1. Then (0, 0) 6= (x, 1)(y, 1) = (xy, 1) ∈ P ⇒ (x, 1) ∈ P
or (y, 1) ∈ P ⇒ x ∈ P1 or y ∈ P1. So P1 is a prime ideal of S1. Likewise P2 is
empty or a prime ideal of S2. But it is easily checked that if P1 (resp., P2) is a
prime ideal of S1 (resp., S2), then P1 × S2 (resp., S1 × P2) is a prime ideal of
S1 × S2. Since a union of prime ideals is prime, the result follows. �

Theorem 10. Let S be a commutative semigroup and P a proper ideal of S
satisfying (WP4). If P is not prime, then P

√
0 = 0. Thus if P and Q are

non-prime ideals of S satisfying (WP4), then PQ = 0.

Proof. Let 0 6= x ∈
√

0. If x ∈ P , xP ⊆ P 2 = 0 by Theorem 8. So suppose
x /∈ P . Since (WP4) ⇒ (WP3), (P : x) = P or (P : x) = (0 : x). As
P ⊆ (P : x), the second case gives xP = 0. So suppose that (P : x) = P .
Let xn = 0, but xn−1 6= 0. Then 0 6= xn−1 ∈ (P : x) = P , so x ∈ P , a

contradiction. Thus P
√

0 = 0. �

Example 11 (P satisfies (WP3) and not prime ; P
√

0 = 0). Let n ≥ 2
and En be as in Example 6. We saw that P = (x) satisfies (WP3). But√

0 = (x, y) ) P , so P is not prime and P
√

0 = (x)(x, y) = (x2) 6= 0. In fact,
P 2 6= 0.

Proposition 12. Let S be a commutative semigroup and {Pα}α∈Λ be a non-
empty family of ideals of S satisfying (WPn). Then P =

⋃
α∈Λ Pα satisfies

(WPn). If every Pα is a non-prime ideal satisfying (WP4), then P 2 = 0.

Proof. Let P =
⋃
α∈Λ Pα. The (WP1) case is clear. Now assume each Pα

satisfies (WP3). By Proposition 4, we need to show that 0 6= (x)(y, z) ⊆ P ⇒
(x) ⊆ P or (y, z) ⊆ P . Suppose (y, z) * P , say y /∈ P . Then xz ∈ Pα for some
α. If xy = 0, then 0 6= (x)(y, z) = (xz) ⊆ Pα, hence (x) ⊆ Pα ⊆ P since Pα
satisfies (WP3). But if xy 6= 0, then 0 6= (x)(y) ⊆ P implies (x) ⊆ P since P
is weakly prime. Now assume each Pα satisfies (WP4). By Theorem 8, each
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non-prime Pα ⊆
√

0. So, if at least one Pα is prime, then P is the union of the
prime Pα’s, hence prime. Now suppose no Pα is prime. Then each PαPβ = 0
by Theorem 10. So P satisfies (WP3) and P 2 = 0, hence P satisfies (WP4) by
Theorem 8. �

Corollary 13. Let S be a commutative semigroup with
√

0 not a square-zero
prime ideal. Then S has a unique largest non-prime ideal P that satisfies
(WP4).

Proof. Let P be the union of the non-prime ideals of S that satisfy (WP4). It
suffices to show that P satisfies (WP4) but is not prime. Since 0 is not prime,

P 6= ∅, hence by Proposition 12, P satisfies (WP4) and P 2 = 0. So P ⊆
√

0

and the inclusion is proper if
√

0 is prime. Therefore P is not prime. �

Example 14. (1) (For 1 ≤ n ≤ 3, there is no result analogous to Corollary 13
for (WPn).) Let S be the commutative semigroup with generators x, y, z and
relations y2 = y, z2 = z, and x3 = xy = xz = yz = 0, so S = {0, 1, x, x2, y, z}
and
√

0 = (x) is not prime or square zero. One can easily check that (x), (y),
and (z) are non-prime ideals satisfying (WP3). So for 1 ≤ n ≤ 3, the union
of the non-prime ideals satisfying (WPn) is the maximal ideal (x, y, z), hence
there is no largest non-prime ideal satisfying (WPn).

(2) (A commutative semigroup with
√

0 a square-zero prime ideal may or
may not have a largest non-prime ideal satisfying (WP4).) Let S1 = {0, 1, x, y}
and S2 = {0, 1, x}, where x2 = y2 = xy = 0. In each Si,

√
0 is a square-zero

prime (in fact maximal) ideal. The non-prime ideals of S1 satisfying (WP4)
are 0, (x), and (y), so S1 has no largest such ideal. However, the largest (in
fact only) non-prime ideal of S2 satisfying (WP4) is 0.

Proposition 15. Let S be a commutative semigroup and {Pα}α∈Λ be a non-
empty family of ideals of S satisfying (WP4), at least one of which is not prime.
Then

⋂
α∈Λ Pα satisfies (WP4).

Proof. By Theorem 8, each non-prime Pα ⊆
√

0, so we may assume every Pα
is non-prime. Suppose that P =

⋂
α∈Λ Pα fails (WP4). Then 0 6= AB ⊆ P

for some ideals A and B of S not contained in P . So there are α, β ∈ Λ
with A * Pα and B * Pβ , hence B ⊆ Pα and A ⊆ Pβ by (WP4). But then
AB ⊆ PβPα = 0 by Theorem 10, a contradiction. �

Example 16 (An intersection of two non-prime ideals satisfying (WP3) need
not satisfy (WP1)). Let S be the commutative semigroup with generators
x, y, z, w and relations x2 = x, y2 = y, xz = z, yw = w, and xw = yz =
z2 = w2 = zw = 0, so S = {0, 1, x, y, z, w, xy}. The proper ideal P = (x, z) =
{0, x, xy, z} is not prime since w2 ∈ P but w /∈ P . But P satisfies (WP3)
since (P : 1) = (P : y) = P and (P : w) = {0, x, z, w, xy} = (0 : w). Sim-
ilarly, Q = (y, w) = {0, y, xy, w} is a non-prime ideal satisfying (WP3). But
P ∩Q = {0, xy} fails (WP1).
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Theorem 17 (c.f. [4, Proposition 3]). Let S be a commutative semigroup.
Then

(1) Every proper ideal of S satisfies (WP4) if and only if for all ideals A
and B of S, AB = 0, A, or B.

(2) Every proper (principal) ideal of S satisfies (WP1) if and only if for
principal ideals A and B of S, AB = 0, A, or B.

Proof. (1) (⇒) Let A and B be ideals of S. If A = B = S, AB = A = B. So
suppose that at least one of A and B is proper, so AB is proper. If AB 6= 0,
then 0 6= AB ⊆ AB ⇒ A ⊆ AB or B ⊆ AB since AB satisfies (WP4), so
AB = A or AB = B. (⇐) Let P be a proper ideal of S and suppose A and B
are ideals with 0 6= AB ⊆ P . Then AB = A or AB = B so A ⊆ P or B ⊆ P .

(2) (⇒) Suppose every proper principal ideal of S satisfies (WP1). Suppose
(a)(b) 6= 0. Then 0 6= ab ∈ (ab) ⇒ a ∈ (ab) or b ∈ (ab) since (ab) is weakly
prime, so (a) = (ab) or (b) = (ab). (⇐) Let P be a proper ideal of S. Let
0 6= ab ∈ P . Then (ab) = (a) or (ab) = (b) so a ∈ (ab) ⊆ P or b ∈ (ab) ⊆ P . �

There is a much stronger version of Theorem 17 for commutative rings: every
proper (principal) ideal of a commutative ring R is weakly prime if and only
if (R,M) is quasilocal with M2 = 0 or R is a direct product of two fields.
(The statement without the “principal” is [2, Theorem 8]. But Theorem 17(2)
shows that every proper ideal is weakly prime if every proper principal ideal
is.) The paper [4] investigates rings not necessarily commutative or with an
identity where every proper ideal is weakly prime.

We now take a moment to consider two concepts related to weakly prime
ideals, namely weakly multiplicatively closed subsets and weakly radical ideals.
We give some examples to illustrate how many of the familiar facts about mul-
tiplicatively closed subsets and radical ideals do not carry over to their “weak”
counterparts, even in the commutative ring case. (All of our previous examples
have been of phenomena that could appear in commutative semigroups but not
commutative rings.)

Let S be a commutative semigroup. Call T ⊆ S weakly multiplicatively
closed if s, t ∈ T ⇒ st ∈ T ∪ {0}, or equivalently T ∪ {0} is multiplicatively
closed. Note that a proper ideal P of S is (weakly) prime if and only if S \P is
(weakly) multiplicatively closed. The analog of Krull’s Lemma does not hold
for weakly multiplicatively closed sets (in either commutative semigroups or
commutative rings). For let R = Q[X]/(X4). Since R is a principal ideal ring,

its ring and semigroup ideals coincide. The ideal (X
3
) is maximal with respect

to disjointness from the weakly multiplicatively closed subset {X2}, but (X
3
)

is not weakly prime.
An ideal I of a commutative semigroup is (weakly) radical if (0 6=) xn ∈ I ⇒

x ∈ I. It is easily checked that I is radical if and only if x2 ∈ I ⇒ x ∈ I.

However, let R = Q[X]/(X4). Then 0 6= f
2 ∈ (X

3
) ⇒ f ∈ (X

3
), but (X

3
)

is not weakly radical. Clearly an ideal I is radical if and only if An ⊆ I, A
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an ideal of S, implies A ⊆ I. However, strictly stronger than being weakly
radical is the condition (∗) 0 6= An ⊆ I, A an ideal of S, implies A ⊆ I. For let
R = Q[X,Y, Z]/J , where J = (X3, X2Y,XY 2, X2Z,XZ2, Y 3, Y 2Z, Y Z2, Z3).
Then 0 6= (X,Y , Z)3 = (XY Z) ( (X,Y , Z), so (XY Z) fails (∗). However,
it is weakly radical. In fact, if (f, g)2 ⊆ (XY Z), then (f, g)2 = 0. Indeed,
(f, g)2 ⊆ (XY Z) ⇔ (f, g)2 ⊆ (X,Y, Z)3 ⇔ (f, g) ⊆ (X,Y, Z)2 ⇒ (f, g)2 ⊆
J ⇔ (f, g)2 = 0. This example also shows that, unlike (WP4), it is not enough
to check (∗) for 2-generated ideals. Finally, it is well known that an ideal
is radical if and only if it is an intersection of prime ideals. But a weakly
radical ideal need not be an intersection of weakly prime ideals. For let R =
Q[X]/(X2) × Q[X]/(X2). Then I = (X) × 0 is weakly radical. By Theorem
9, every nonzero weakly prime (semigroup) ideal of R is actually prime, so I,
being a nonzero non-radical ideal, is not weakly prime.

We conclude with some notes on the connection between weakly prime ele-
ments and unique factorization. We make the following definition by analogy
with [3], which studies factorization in commutative rings.

Definition 18. Let S be a commutative semigroup.

(1) S is présimplifiable if for x, y ∈ S, x = xy 6= 0⇒ y is a unit.
(2) S is restricted cancellative or an r-semigroup if for x, y, z ∈ S, xy =

xz 6= 0⇒ (y) = (z).
(3) A nonunit s ∈ S is (weakly) prime if (s) is (weakly) prime.
(4) A nonunit s ∈ S is irreducible if s = ab, a, b ∈ S, implies (s) = (a) or

(b).
(5) S is atomic if every (nonzero) nonunit is a product of irreducible ele-

ments.
(6) S is a unique factorization semigroup (UFS) if

(a) S is atomic and
(b) if 0 6= x1 · · ·xn = y1 · · · ym where xi, yj are irreducible, then n = m

and each (xi) = (yi) after a suitable reordering.

For nonzero elements, prime ⇒ weakly prime ⇒ irreducible, but none of
the implications reverse. On the other hand, the zero element is always weakly
prime, but is irreducible if and only if it is prime (c.f. [3, Theorem 2.13]).
Using uniqueness, one routinely shows that UFS ⇒ restricted cancellative ⇒
présimplifiable. It is also easy to see that in a présimplifiable commutative
semigroup (i) (x) = (y) ⇔ x = λy for some unit λ and (ii) a nonunit s is
irreducible ⇔ it is not a product of two nonzero nonunits ⇔ s = 0 is prime or
(s) is maximal among the proper principal ideals of S.

Before we can state our results, we need to review the following definitions.
Let S be a commutative semigroup. We say x, y ∈ S are associates, written
x ∼ y, if (x) = (y). Then ∼ is a congruence on S and S/ ∼ is isomorphic to the
semigroup P (S) of principal ideals of S. Note that P (S) is reduced in the sense
that it has only one unit. Let I be a proper ideal of S. Then the Rees quotient of
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S by I is the semigroup S/I = S \(I \{0}) with product ab =

{
ab, if ab /∈ I
0, if ab ∈ I.

Note that if P is a weakly prime ideal of S, then P/I = P \(I \{0}) is a weakly
prime ideal of S/I. However, even if P is prime (hence satisfies (WP4)), it need
not be the case that P/I satisfies (WP3) – see Examples 6 or 7. But if I ⊆ P ,
then (i) P is prime ⇔ P/I is prime and (ii) P satisfies (WPn) ⇒ P/I satisfies
(WPn). (These facts are easily checked from the definitions or Proposition 4.)
Of course, the converse in (ii) fails: take P = I to be any non-weakly prime
proper ideal. For a less trivial example, if S is the free commutative semigroup
on x, y, z, then (x, yz) fails (WP1) but (x, yz)/(xy) satisfies (WP4).

Lemma 19. Let S be a commutative semigroup.

(1) S is présimplifiable (resp., restricted cancellative, a UFS) if and only
if P (S) is.

(2) If S is présimplifiable (resp., restricted cancellative, atomic, a UFS),
then so is S/I.

(3) Let S be a UFS and X a complete set of non-associate irreducible el-
ements of S. Then P (S) is isomorphic to a Rees quotient of the free
commutative semigroup on |X| generators.

Proof. (1) The présimplifiable and restricted cancellative cases follow routinely
from the definitions. For the UFS case, we may assume S and P (S) are
présimplifiable, so their irreducible elements are the nonunits that are not
products of two nonzero nonunits. Using this characterization, we see that
s ∈ S is irreducible if and only if (s) is irreducible in P (S). If s = a1 · · · an is
a product of irreducible elements, then so is (s) = (a1) · · · (an). Conversely, if
(s) = (a1) · · · (an) is a product of irreducible elements, then s = (λa1)a2 · · · an
for some unit λ (by présimplifiability) and λa1, a2, . . . , an are irreducible. From
the previous two sentences it easily follows that S is a UFS if and only if P (S)
is.

(2) The présimplifiable and restrictive cancellative cases are clear. The
atomic and UFS cases easily follow from the observation that x ∈ S/I is irre-
ducible simultaneously as an element of S or S/I.

(3) The proof of (1) shows that each nonzero nonunit in P (S) has a unique
representation (up to order) of the form (x1) · · · (xn) with xi ∈ X. Thus
P (S) ∼= F/I, where F is the free commutative semigroup on X and I =
{x1 · · ·xn | xi ∈ X and x1 · · ·xn = 0 in S}. �

Theorem 20. For a commutative semigroup S the following are equivalent.

(1) S is a UFS.
(2) P (S) is a UFS.
(3) P (S) is a Rees quotient of a free commutative semigroup.
(4) S is restricted cancellative and every (nonzero) nonunit is a product of

weakly prime elements.
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(5) S is a restricted cancellative atomic semigroup in which every irre-
ducible element is weakly prime.

Proof. (1) ⇔ (2) ⇔ (3) Lemma 19. (1) ⇒ (5) Let S be a UFS. We have
already observed that S is restricted cancellative. Now let s ∈ S be a nonzero
irreducible element and suppose 0 6= xy ∈ (s), say xy = st. If x or y is a unit,
then (s) ⊇ (xy) = (x) or (y). If t is a unit, then x(yt−1) = s and irreducibility
implies (s) = (x) or (s) = (yt−1) = (y). So let us assume x, y, and t are
nonunits. Write x = x1 · · ·xm, y = y1 · · · yn, and t = t1 · · · tk with each factor
on the right-hand side irreducible. Applying uniqueness to x1 · · ·xmy1 · · · yn =
st1 · · · tk shows that (s) equals some (xi) or (yj), hence x ∈ (s) or y ∈ (s).
(5) ⇒ (4) Clear. (4) ⇒ (1) Since weakly prime elements are irreducible, S is
atomic. Now write 0 6= x1 · · ·xm = y1 · · · yn with each xi and yj irreducible.
Each xi or yj is an associate of a weakly prime element by irreducibility, hence
weakly prime. Since y1 · · · yn ∈ (xm) and (xm) is weakly prime, we can reorder
so that (xm) ⊇ (yn), hence by présimplifiability yn = λxm for some unit
λ. Restricted cancellation then gives 0 6= x1 · · ·xm−1 = (λy1)y2 · · · yn−1. By
induction, m − 1 = n − 1 (hence m = n) and we can reorder so that (x1) =
(λy1) = (y1), (x2) = (y2), . . . , and (xm−1) = (ym−1). �

Example 21. Let E,En, and En,i be as in Example 6.

(1) Let F be the free commutative semigroup with generators x and y.
Then E = F/(xy, y2) and En = F/(xy, y2, xn+1), so E and En are
UFS’s.

(2) The semigroup En,i is not présimplifiable, let alone a UFS. But x, y ∈
En,i are weakly prime, so every nonunit of En,i is a product of weakly
prime elements.

We note that Theorem 20 can be sharpened for commutative rings. From [2,
Theorem 14] it follows that every (nonzero) nonunit element of a commutative
ring R is a product of weakly prime elements if and only if (R,M) is quasilocal
with M2 = 0 or R is a finite direct product of unique factorization domains
and Artinian local principal ideal rings. So a commutative ring R is a unique
factorization ring (meaning (R, ·) is a UFS) if and only if it has no nontrivial
idempotents and every (nonzero) nonunit is a product of weakly prime elements.

Example 22 (A présimplifiable commutative semigroup in which every non-
unit is a product of prime elements need not be a UFS). Let S be the commu-
tative semigroup with generators x and y and relation x2y = xy2. It can be
checked that x and y are non-associate primes and S is présimplifiable (hence
has no nontrivial idempotents). So every nonunit is a product of prime elements
but S is not a UFS.

Note however that a présimplifiable commutative semigroup has every proper
(principal) ideal weakly prime if and only if it has a square-zero maximal ideal.
So such a semigroup is a UFS.
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Example 23 (A commutative semigroup in which every proper ideal is prime
need not be a UFS). Let S be a nontrivial chain with greatest element 1 and
least element 0. Then (S,∧) is a commutative semigroup. Note that every
proper ideal is prime, so every nonunit is prime, hence irreducible. But S is
présimplifiable (resp., a UFS) ⇔ S = {0, 1}.

We note one final connection between weakly prime ideals and factorization.
Let S be a commutative semigroup and P be a proper ideal of S. If every
nonzero element of P is irreducible, then P is weakly prime (c.f. [2, Theorem
9(2)]). But P need not satisfy (WP3). Consider the commutative semigroup
with generators x, y, z and relations x2 = y2 = z2 = xz = yz = 0 and xy = y.
Then (y) = {0, y} is weakly prime and y is irreducible, but from 0 6= (x)(y, z) =
(y) we see that (y) fails (WP3). On the other hand, if S has a unique prime
ideal M and P satisfies (WP4), then P = M or every nonzero element of P is
irreducible (c.f. [2, Theorem 9(3)]). However, the commutative semigroup E2

from Example 6 has a unique prime ideal M = (x, y), but P = (x) = {0, x, x2}
satisfies (WP3), x2 is not irreducible, and P 6= M .
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