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ON WEAKLY (m,n)-PRIME IDEALS OF

COMMUTATIVE RINGS

Hani A. Khashan and Ece Yetkin Celikel

Abstract. Let R be a commutative ring with identity and m, n be

positive integers. In this paper, we introduce the class of weakly (m,n)-
prime ideals generalizing (m,n)-prime and weakly (m,n)-closed ideals.

A proper ideal I of R is called weakly (m,n)-prime if for a, b ∈ R, 0 ̸=
amb ∈ I implies either an ∈ I or b ∈ I. We justify several properties

and characterizations of weakly (m,n)-prime ideals with many supporting

examples. Furthermore, we investigate weakly (m,n)-prime ideals under
various contexts of constructions such as direct products, localizations

and homomorphic images. Finally, we discuss the behaviour of this class

of ideals in idealization and amalgamated rings.

1. Introduction

Let R be a commutative ring with identity. By dim(R), J(R), Nil(R),
reg(R) and U(R), we denote the Krull dimension, Jacobson radical, nilpotent
elements, regular elements and unit elements of R, respectively. For an ideal I
of R and a positive integer n, we denote the set {x ∈ R : xn ∈ I} by n

√
I.

One of the most interesting and revolutionary concepts in commutative rings
is the study of generalizations of prime ideals. Weakly prime ideals in a com-
mutative ring with nonzero identity have been first introduced and studied by
Anderson and Smith in [5]. Generalizing this concept, the weakly n-absorbing
ideals are established in [21]. A proper ideal I of a ring R is called weakly
n-absorbing if whenever 0 ̸= a1 · · · an+1 ∈ I for a1, . . . , an+1 ∈ R, then there
are n of the ai’s whose product is in I. Besides, in 2016, the notion of weakly
semiprime ideals was presented. According to the definition in [7], a proper
ideal I of a ring R is said to be semiprime (resp. weakly semiprime) if whenever
x2 ∈ I (resp. 0 ̸= x2 ∈ I) for some x ∈ R, then x ∈ I. Recall from [24] that a
proper ideal I of R is said to be weakly 1-absorbing prime if for non-unit ele-
ments a, b, c ∈ R with 0 ̸= abc ∈ I, either ab ∈ I or c ∈ I. Trivially, any weakly
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prime ideal is weakly semiprime and weakly n-absorbing, but the converses of
these implications do not hold. For a background and more examples about
1-absorbing ideal structures, we refer the reader to [11], [12] and [18].

Let m and n be positive integers. The concepts of prime and weakly prime
ideals have been generalized in [2] and [3] by defining (m,n)-closed and weakly
(m,n)-closed ideals. A proper ideal I of a ring R is called an (m,n)-closed
(resp. a weakly (m,n)-closed) ideal of R if whenever am ∈ I (resp. 0 ̸= am ∈ I)
for some a ∈ R, then an ∈ I. In particular, I is said to be a semi-n-absorbing
(resp. weakly semi-n-absorbing) ideal of R if for x ∈ R, xn+1 ∈ I (resp. 0 ̸=
xn+1 ∈ I) implies xn ∈ I. More generalizations of prime ideals can be seen in
[6, 8–10].

In a recent work [17], we introduced the class of (m,n)-prime ideals which
lies properly between the classes of prime and (m,n)-closed ideals. A proper
ideal I of a ring R is said to be (m,n)-prime if for a, b ∈ R with amb ∈ I, then
either an ∈ I or b ∈ I. Motivated from this concept, the purpose of this paper
is to define and study weakly (m,n)-prime ideals. We call a proper ideal I of
R weakly (m,n)-prime if for a, b ∈ R, 0 ̸= amb ∈ I implies either an ∈ I or
b ∈ I. Thus, an (m,n)-prime ideal is a weakly (m,n)-prime ideal, and the two
concepts agree when R is reduced. However, this generalization is proper as
we can see in Example 2.

Among many other results, we examine in Section 2 the relationship among
the new class of ideals and the old ones in the literature. We illustrate the
place of weakly (m,n)-prime ideals in a diagram and give many examples to
verify that the arrows are not reversible (see Examples 1-3 and Remark 1).
Then, we determine all weakly (m,n)-prime ideals that are not (m,n)-prime
of R = Zpk , where p is prime and k > 0 (Corollary 1). Moreover, we prove
that if I is a weakly (m,n)-prime ideal of a ring R that is not (m,n)-prime,

then aI, bI ⊆ Nil(R) for some a /∈ n
√
I and b /∈ I (Corollary 5). Several

characterizations of weakly (m,n)-prime ideals in different rings are given (see
Theorems 3, 6).

If R = R1 × · · · × Rk, where Ri’s are commutative rings with identity,
then a complete description of all weakly (m,n)-prime ideals of R is given in
Theorem 7 and Corollaries 2, 8. For the particular case that m ≥ n, we show
that a rings for which every proper ideal is weakly (m,n)-prime must be zero
dimensional (Theorem 5). Furthermore, a characterization for rings having
only one weakly (m,n)-prime ideal disjoint with a multiplicatively closed set S
is given in Proposition 9.

Let R be a ring and M an R-module. Recall that R(+)M = {(r, b) :
r ∈ R, b ∈ M} with coordinate-wise addition and multiplication defined as
(r1, b1)(r2, b2) = (r1r2, r1b2 + r2b1) is a commutative ring with identity (1, 0).
This ring is called the idealization of M . For an ideal I of R and a submod-
ule N of M , I(+)N is an ideal of R(+)M if and only if IM ⊆ N , [22] and
[23]. In the last section, we start by clarifying the relationships between the
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weakly (m,n)-prime ideals of a ring R and those of the idealization ring R(+)M
(Proposition 10). Next, for rings R and R′, an ideal J of R′ and a ring homo-
morphism f : R → R′, we justify conditions under which some kinds of ideals
in the amalgamated ring R ⋊⋉f J are weakly (m,n)-prime. The idealization
and amalgamation extensions enables us to built more interesting examples of
weakly (m,n)-prime ideals which are not (m,n)-prime.

2. Properties of weakly (m,n)-prime ideals

We begin this section with our main definition and several examples to show
the place of the class of weakly (m,n)-prime ideals in the literature.

Definition 1. Let R be a ring and m, n be positive integers. A proper ideal
I of R is called weakly (m,n)-prime in R if for a, b ∈ R, 0 ̸= amb ∈ I implies
either an ∈ I or b ∈ I.

It is clear that any weakly (m,n)-prime ideal is weakly (m,n′)-prime for all
n′ ≥ n. By definition, the zero ideal of any ring is weakly (m,n)-prime for all
positive integers m and n. On the other hand, for any prime integer p, the zero
ideal in the ring Zpm+1 is not (m,m)-prime since pmp = 0̄ but, pm ̸= 0̄. If I is
a weakly prime ideal of a ring R, then clearly, I is weakly (m,n)-prime in R
for all positive integers m and n. Moreover, the classes of weakly (1, 1)-prime
ideals and weakly prime ideals in R are coincide. Unlike the case of weakly
(m,n)-closed ideals, if n > m, then a proper ideal need not be weakly (m,n)-
prime. Indeed, the ideal I = p4Z of the ring of integers Z is not a weakly
(2, 3)-prime ideal of Z as p2 · p2 ∈ I but p3, p2 /∈ I.

Example 1. Let (R,M) be a quasi local ring with Mk = 0 for some positive
integer k. Then every proper ideal of R is weakly (m,n)-prime for all positive
integers m and n such that m ≥ k. Indeed, let I be a proper ideal of R.
Suppose that amb ∈ I and b /∈ I for some a, b ∈ R. Then a is non-unit and so
a ∈M . Therefore, amb = 0 and we are done.

The above general example gives plenty non-trivial examples of weakly
(m,n)-prime ideals that are not (m,n)-prime.

Example 2. Consider the ideal I = ⟨4̄⟩ of the ring R = Z8. Then Example 1
shows that I is a weakly (3, 1)-prime ideal in R. However, I is neither (3, 1)-
prime nor weakly prime. Indeed, 2̄3 ∈ I and 0̄ ̸= 2̄ · 2̄ ∈ I but 2̄ /∈ I.

Note that unlike the (m,n)-prime case, we may find a weakly (m,n)-prime
ideal that is not weakly (m′, n) for m′ < m. Indeed, the weakly (3, 1)-prime
ideal I in Example 2 is clearly not weakly (2, 1)-prime.

Example 3. Consider the idealization ring R = Z8(+) ⟨4̄⟩ and let I = 0̄(+) ⟨4̄⟩.
Let (a,m1), (b,m2) ∈ R such that (a2b, a2m2 + 2abm1) = (a,m1)

2(b,m2) ∈ I
and (a,m1), (b,m2) /∈ I. Then a ̸= 0̄ and b ̸= 0̄ and so clearly, (a,m1)

2(b,m2) =
(0̄, 0̄). Therefore, I is a weakly (2, 1)-prime ideal of R. On the other hand, I is
not (m,n)-prime in R since for example, (2̄, 0̄)2(2̄, 0̄) = (0̄, 0̄) ∈ I but, (2̄, 0̄) /∈ I.
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Remark 1. Let I be a proper ideal of a ring R.
(1) If I is a weakly 1-absorbing prime (resp. weakly prime) ideal of R, then

I is a weakly (m,n)-prime ideal for n ≥ 2 (resp. for all n). Indeed, let a, b ∈ R
with 0 ̸= amb ∈ I and b /∈ I. Then a is nonunit. If b is a unit, then 0 ̸= am =
a·am−2·a ∈ I and since I is 1-absorbing prime, we have 0 ̸= am−1 = a·am−2 ∈ I
or a ∈ I. Continue this process to get 0 ̸= a2 ∈ I and so an ∈ I for all n ≥ 2.
If I is weakly prime, then a ∈ I and we are done.

(2) We may find a positive integer n such that I is weakly n-absorbing but
not weakly (m,n)-prime in R for every positive integer m. For example, the
ideal I = 0(+)pZ is a weakly 2-absorbing ideal in Z(+)Z for any prime integer
p, [1, Example 4.11]. But, I is not weakly (m, 2)-prime for every positive integer
m. Indeed, (0, 0) ̸= (p, 0)m(0, 1) ∈ I but (p, 0)2, (0, 1) /∈ I. Moreover, I = ⟨8̄⟩
is a weakly (m, 2)-prime ideal in Z16 for all m ≥ 4 by Example 1. But, I is not
weakly 2-absorbing since 0 ̸= 2̄ · 2̄ · 2̄ ∈ I with 2̄ · 2̄ /∈ I.

(3) For all positive integers m and n, it is proved in [17] that if I is an
(m,n)-prime ideal of R, then I is semi n-absorbing in R. However, this is not
true in the weakly case. For example, the weakly (3, 1)-prime ideal of Example
2 is not weakly semi 1-absorbing.

(4) If I is a weakly (m,n)-prime ideal of a reduced ring R, then I is weakly
primary in R. Indeed, if 0 ̸= ab ∈ I for a, b ∈ R, then 0 ̸= amb ∈ I since R
is reduced. Thus, an ∈ I or b ∈ I and so a ∈

√
I or b ∈ I. Moreover, if I

is weakly primary with (
√
I)n ⊆ I, then I is weakly (m,n)-prime in R for all

positive integers m and n. Indeed, if a, b ∈ R such that 0 ̸= amb ∈ I and b /∈ I,
then a ∈

√
I and so an ∈ (

√
I)n ⊆ I.

(5) There are some weakly primary ideals that are not weakly (m,n)-prime.
Consider the ideal I = ⟨4̄⟩ (+)Z8 in the ring R = Z8(+)Z8. Let (a, b), (c, d) ∈ R
with (0, 0) ̸= (a, b)(c, d) ∈ ⟨4̄⟩ (+)Z8 and (a, b) /∈ ⟨4̄⟩ (+)Z8. Then ac ∈ ⟨4̄⟩ and
a /∈ ⟨4̄⟩ imply that c ∈

〈
2
〉
as ⟨4̄⟩ is primary in R. Hence, (c, d) ∈

√
I =〈

2
〉
(+)Z8 and I is a (weakly) primary ideal of R. However, I is not weakly

(2, 1)-prime as (0, 0) ̸= (2, 1)2(1, 1) ∈ I but neither (2, 1) ∈ I nor (1, 1) ∈ I.
(6) SupposeR is an integral domain and I =

∏
α∈ΛM

kα
α , where {Mα : α ∈ Λ}

is a family of distinct maximal ideals of R. If I is non-zero, then it is not
weakly (m,n)-prime for all positive integers m and n. Indeed, for each β ∈ Λ,
choose xβ ∈ Mβ such that xβ /∈ Mα for all α ̸= β. Then clearly, 0 ̸=
(x

kβ

β )m(
∏

α ̸=βx
kα
α ) ∈ I but (x

kβ

β )n /∈ I and
∏

α ̸=βx
kα
α /∈ I.

We illustrate the place of the class of weakly (m,n)-prime ideals for all
positive integers m and n by the following diagram:

weakly semiprime −→ weakly semi
n-absorbing

←− weakly n-absorbing

↑ ↘ ↑ ↙

weakly prime −→ weakly (m,n)-closed
weakly 1-absorbing

primary
↓ ↘ ↑ ↑

weakly 1-absorbing prime −→ weakly (m,n)-prime −→ weakly primary
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Next, for a prime integer p and positive integers m,n and k, we justify
weakly(m.n)-prime ideals in the ring Zpk .

Theorem 1. Let p be a prime integer and m,n, k positive integers. Let I = ⟨pt⟩
be a proper ideal of R = Zpk , where 1 ≤ t ≤ k. Then I is a weakly (m,n)-prime
ideal of R if and only if t = k or m ≥ k or n ≥ t.

Proof. If t = k, then I = 0 is trivially a weakly (m,n)-prime ideal ofR. Suppose
t ̸= k and m ≥ k or n ≥ t and let a, b ∈ R such that 0 ̸= amb ∈ I. If b /∈ I,
then am ∈ ⟨p⟩ and so a ∈ ⟨p⟩ as I is primary. If m ≥ k, then am ∈ ⟨pm⟩ = 0,
a contradiction. Hence, b ∈ I and I is weakly (m,n)-prime in R. If n ≥ t,
then an ∈ ⟨pn⟩ ⊆ ⟨pt⟩ and so again I is weakly (m,n)-prime in R. Conversely,
suppose I is a weakly (m,n)-prime ideal of R but t ̸= k, m < k and n < t. We
have two cases. Case 1: m ≤ t. In this case, we have 0 ̸= pt = pmpt−m ∈ I but
pn /∈ I and pt−m /∈ I, a contradiction. Case 2: m > t. In this case, we have
0 ̸= pm ∈ I but pn /∈ I, a contradiction.

Therefore, we must have either t = k or m ≥ k or n ≥ t. □

By using Theorem 1 and [17, Theorem 3], we characterize weakly (m,n)-
prime ideals of Zpk that is not (m,n)-prime.

Corollary 1. Let p be a prime integer and m,n, k be positive integers. Let
I = ⟨pt⟩ be a proper ideal of R = Zpk , where 1 ≤ t ≤ k. Then I is a weakly
(m,n)-prime ideal of R that is not (m,n)-prime if and only if n < t and (t = k
or m ≥ k).

Theorem 2. Let R be a ring such that every power of a prime ideal is primary.
Let m, n and t be positive integers and I = ⟨pt⟩, where p is a non-nilpotent
prime element of R. The following are equivalent.

(1) I is an (m,n)-prime ideal of R.
(2) I is a weakly (m,n)-prime ideal of R.
(3) n ≥ t.

Proof. (1)⇒ (2) Clear.
(2)⇒ (3) Suppose I is weakly (m,n)-prime in R and n < t. If m ≤ t, then

0 ̸= pt = pmpt−m ∈ I but pn /∈ I and pt−m /∈ I, a contradiction. Otherwise, if
m > t, then 0 ̸= pm ∈ I but pn /∈ I which is also a contradiction. Thus, n ≥ t
as needed.

(3)⇒ (1) [17, Theorem 3]. □

Theorem 3. Let m, n be positive integers and I be a proper ideal of a ring R.
Then the following are equivalent.

(1) I is a weakly (m,n)-prime ideal of R.
(2) (I : am) ⊆ I ∪ (0 : am) for all a ∈ R such that an /∈ I.
(3) (I : am) = I or (I : am) = (0 : am) for all a ∈ R such that an /∈ I.
(4) Whenever a ∈ R and J is an ideal of R with 0 ̸= amJ ⊆ I, then an ∈ I

or J ⊆ I.
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Proof. (1)⇒(2) Let a ∈ R such that an /∈ I and let b ∈ (I : am). If amb = 0,
then b ∈ (0 : am). Suppose that amb ̸= 0. Since I is weakly (m,n)-prime, we
have b ∈ I. Thus, we get the required inclusion.

(2)⇒(3) Clear.
(3)⇒(4) Let a ∈ R and J be an ideal of R with 0 ̸= amJ ⊆ I and suppose

an /∈ I. Then J ⊆ (I : am)\(0 : am) and by our hypothesis, we have J ⊆ (I :
am) = I.

(4)⇒(1) Suppose that 0 ̸= amb ∈ I for some a, b ∈ R and put J = bR. Then
0 ̸= amJ ⊆ I and by (4), we conclude that an ∈ I or b ∈ J ⊆ I. Thus, I is a
weakly (m,n)-prime ideal of R. □

For principal ideal rings, we have further characterizations for weakly (m;n)-
prime ideals.

Corollary 2. Let m, n be positive integers, R be a principal ideal ring and I
be a proper ideal of R. Then the following are equivalent.

(1) I is a weakly (m,n)-prime ideal of R.
(2) (I : am) ⊆ I ∪ (0 : am) for all a ∈ R such that an /∈ I.
(3) (I : am) = I or (I : am) = (0 : am) for all a ∈ R such that an /∈ I.
(4) If a ∈ R and J is an ideal of R with 0 ̸= amJ ⊆ I, then an ∈ I or

J ⊆ I.
(5) If J and K are ideals of R with 0 ̸= JmK ⊆ I, then Jn ⊆ I or K ⊆ I.
(6) (I : Jm) ⊆ I ∪ (0 : Jm) for any ideal J of R such that nth power of

which is not contained in I
(7) (I : Jm) = I or (I : Jm) = (0 : Jm) for any ideal J of R such that nth

power of which is not contained in I
(8) If J is an ideal of R and b ∈ R with 0 ̸= Jmb ⊆ I, then Jn ⊆ I or

b ∈ I.

Proof. (1)⇒(2)⇒(3)⇒(4). Theorem 3.
(4)⇒(5) Since R is a principal ideal ring, we may put J := ⟨a⟩ for some

a ∈ R in (4).
(5)⇒(6) Let b ∈ (I : Jm), where J is an ideal of R such that nth power

of which is not contained in I. Then Jmb is not contained in I as well. Put
K = ⟨b⟩. Then, JmK ⊆ I. If JmK = 0, then b ∈ K ⊆ (0 : Jm). Assume that
JmK ̸= 0. Then (5) yields K ⊆ I. Thus, (I : Jm) ⊆ I ∪ (0 : Jm).

(6)⇒(7) Clear.
(7)⇒(8) Assume that 0 ̸= Jmb ⊆ I and Jn is not contained in I. Then

(I : Jm) ̸= (0 : Jm) and from (7), we conclude b ∈ (I : Jm) = I.
(8)⇒(1) Suppose that 0 ̸= amb ∈ I and an /∈ I. Put J = ⟨a⟩. Then 0 ̸=

Jmb is not contained in I and Jn is not contained I imply by (6) that b ∈ I
and we are done. □

Recall from [16] that an ideal of a ring is said to be quasi primary if its
radical is prime.
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Theorem 4. Let R be a ring and I be a proper ideal of R. If I is a weakly
(m,n)-prime ideal of R and the zero ideal of R is quasi primary, then I is quasi

primary in R. Moreover, an ∈ I for all a ∈
√
I\
√
0.

Proof. Suppose that ab ∈
√
I. Then akbk ∈ I for some positive integer k and

so amkbk ∈ I. If amkbk = 0, then {0} is quasi primary implies a ∈
√
0 ⊆
√
I or

b ∈
√
0 ⊆
√
I. Assume that amkbk ̸= 0. Then as I is weakly (m,n)-prime, we

have ank ∈ I or bk ∈ I and so again a ∈
√
I or b ∈

√
I. Now, let a ∈

√
I\
√
0

and let t be the least positive integer such that at ∈ I. Since a is non-nilpotent,
we have 0 ̸= amat−1 ∈ I and since at−1 /∈ I, we have an ∈ I. □

In general, if I is a quasi primary ideal in a ring R, then I need not be
weakly (m,n)-prime in R. For example, consider the ring R = Z2[{Xn}]∞n=1

and the ideal I = ⟨{Xn
n}∞n=1⟩ of R. Then

√
I = ⟨{Xn}∞n=1⟩ is a prime ideal of

R, but I is not weakly (m,n)-prime, where 2n > m. Indeed, Xm
2n ·X2n−m

2n ∈ I
but neither Xn

2n ∈ I nor X2n−m
2n ∈ I.

We justified in Remark 1 that if I is a (weakly) primary ideal of a ring R

such that (
√
I)n ⊆ I, then I is weakly (m,n)-prime in R for all positive integers

m and n. However, even if (
√
I)n ⊆ I, I can be a quasi primary ideal that is

not weakly (m,n)-prime in R. For example, consider the ring R = Z+pXZ[X],
where p is a prime integer and the ideal P = pXZ[X] of R. Then P is a prime
ideal of R and so, I = Pn is a quasi primary ideal in R for n ≤ m. However,
I is not weakly (m,n)-prime as pm, (pXm) ∈ R with 0 ̸= pm(pXm) ∈ I but
neither pn ∈ I nor pXm ∈ I.

A ring R is said to be a UN -ring if every non-unit element of R is a product
a unit and a nilpotent element, [13]. It is verified in [13, Proposition 2(3)] that

R is a UN -ring if and only if R has a unique prime ideal which is
√
0.

Corollary 3. Let R be a UN -ring. If I is a weakly (m,n)-prime ideal of R,

then
√
I is a maximal ideal of R.

Proof. Suppose I is a weakly (m,n)-prime ideal of R. Since
√
0 is the unique

prime in R and
√
I is also prime by Theorem 4, it follows that

√
I =
√
0 is the

unique maximal ideal of R. □

Theorem 5. Let m, n be positive integers, where m ≥ n. If R is a ring in
which every proper ideal is weakly (m,n)-prime, then dim(R) = 0.

Proof. Assume on the contrary that dim(R) ≥ 1 and let P ⊂ Q be two prime
ideals of R. Let a ∈ Q\P and I = ⟨am+1⟩. Then 0 ̸= ama ∈ I and our
assumption implies that an ∈ I or a ∈ I. Hence an = am+1r for some r ∈ R
and this implies that an(1− am−n+1r) = 0 ∈ P . Since P is prime and a /∈ P ,
we conclude that 1−am−n+1r ∈ P ⊂ Q. Thus, we have 1 ∈ Q, a contradiction.
Therefore, dim(R) = 0. □

However, the converses of Corollary 3 and Theorem 5 do not hold in general.
Let k > m > n be positive integers. Then the ideal I = ⟨pm⟩ of the zero
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dimensional UN-ring R = Zpk is not weakly (m,n)-prime by Theorem 1. Note

that
√
I = ⟨p⟩ is the unique maximal ideal of R.

Proposition 1. Let R be a ring, a, b ∈ J(R) and m, n be positive integers.
Then I = ⟨anb⟩ is a weakly (m,n)-prime ideal of R if and only if anb = 0.

Proof. Suppose I = ⟨anb⟩ is weakly (m,n)-prime in R but anb ̸= 0. We have
two cases. Case I: If m ≥ n, then amb ∈ I and so an ∈ I or b ∈ I as
I is weakly (m,n)-prime. If an ∈ I, then there exists some r ∈ R such that
an = anbr, and so an(1 − br) = 0. Therefore, 1 − br ∈ U(R) as b ∈ J(R)
and so an = 0, a contradiction. If b ∈ I, then b = anbr′ for some r′ ∈ R
and hence b(1 − anr′) = 0. Thus, (1 − anr′) ∈ U(R) as a ∈ J(R) and so
b = 0, a contradiction. Case II: If m < n, then aman−mb = anb ∈ I implies
an ∈ I or an−mb ∈ I. If an ∈ I, then similar to the above argument, we get
a contradiction. If an−mb ∈ I, then an−mb(1 − sam) = 0 for some s ∈ R.
Hence, a ∈ J(R) implies 1 − sam ∈ U(R) and so an−mb = 0, a contradiction.
Therefore, anb = 0. The converse part is immediate since the zero ideal is
always weakly (m,n)-prime. □

Let I be a proper ideal of a ring R. Then the ideal ⟨an : a ∈ I⟩ of R generated
by nth powers of elements of I is denoted by In. Note that In ⊆ In ⊆ I and
the equality holds when n = 1. Moreover, it is verified that if n! is a unit of R,
then In = In [4]. In view of Proposition 1, we have the following corollary.

Corollary 4. Let m, n be positive integers. If R is a ring in which all proper
ideals are weakly (m,n)-prime, then J(R)nJ(R) = 0.

Following [20], a non-zero ideal I of a ring R is called secondary if for each
a ∈ R, either aI = I or akI = 0 for some positive integer k. In this case,
P =

√
(0 :R I) is clearly a prime ideal of R. More general, we have the following

definition.

Definition 2. Let I be a non-zero ideal of a ring R and let m,n be positive
integers. Then I is called (m,n)-secondary if for each a ∈ R, n is the smallest
positive integer such that either amI = I or anI = 0.

The following result is an analogues to [21, Theorem 2.8].

Proposition 2. Let I and J be ideals of a ring R and m,n be positive integers.
If I is (m,n)-secondary and J is weakly (m,n)-prime in R, then I∩J is (m,n)-
secondary.

Proof. Let a ∈ R. If anI = 0, then an(I ∩ J) = 0. Suppose anI ̸= 0. Then
amI = I as I is (m,n)-secondary. We prove that am(I ∩ J) = I ∩ J . Let
0 ̸= x ∈ I ∩ J . Then x = amb ∈ J for some b ∈ I. By assumption, either
an ∈ J or b ∈ J . If b ∈ J , then x = amb ∈ am(I ∩ J) and am(I ∩ J) = I ∩ J .
Suppose an ∈ J . If n > m, then an−mI = an−m(amI) = anI = 0 which is a
contradiction. If n ≤ m, then I = amI ⊆ anI ⊆ J and so am(I ∩ J) = amI =
I = I ∩ J . It follows that I ∩ J is (m,n)-secondary in R. □
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An ideal I of a ring R is said to be divided if I ⊆ ⟨x⟩ for every x ∈ R\I.
Next, we determine a condition under which a weakly (m,n)-prime ideal in a
ring is weakly primary.

Proposition 3. Let I be a weakly (m,n)-prime ideal of a ring R. If
√
I is a

divided weakly prime ideal of R, then I is weakly primary in R.

Proof. Let 0 ̸= ab ∈ I ⊆
√
I and b /∈

√
I for a, b ∈ R. Then a ∈

√
I as

√
I is

weakly prime. Note that bm−1 /∈
√
I. Since

√
I is divided, then

√
I ⊆

〈
bm−1

〉
and so a = bm−1r for some r ∈ R. Now, 0 ̸= bmr = ba ∈ I and bn /∈ I imply
r ∈ I as I is weakly (m,n)-prime. Thus, a = bm−1r ∈ I as needed. □

Definition 3. Let I be a weakly (m,n)-prime ideal of a ring R and a, b ∈ R.
Then (a, b) is said to be an (m,n)-zero of I provided that amb = 0 and an, b /∈ I.

It is clear that a weakly (m,n)-prime ideal I of R is not (m,n)-prime if and
only if I has an (m,n)-zero.

Lemma 1. Let m and n be positive integers and I be a weakly (m,n)-prime
ideal of R. If (a, b) is an (m,n)-zero of I, then

(1) (a+x)mb = 0 for every x ∈ I. In particular, if char(R) = m is prime,
then xmb = 0 for every x ∈ I.

(2) am(b+ x) = 0 for every x ∈ I.
(3) amI = 0.

Proof. (1) Suppose (a, b) is an (m,n)-zero of I. Assume on the contrary that
(a+ x)mb ̸= 0 for some x ∈ I. Then

0 ̸= (a+ x)mb = amb︸︷︷︸
0

+

m∑
k=1

(
m
k

)
am−kxkb ∈ I

and b /∈ I imply that (a+x)n ∈ I. Also, since (a, b) is an (m,n)-zero of I, an /∈ I
and so we get (a+x)n /∈ I, a contradiction. Therefore, (a+x)mb = 0 for every
x ∈ I. The “in particular” statement is clear since whenever char(R) = m is
prime, 0 = (a+ x)mb = amb+ xmb = xmb for every x ∈ I.

(2) Assume that am(b+ x) ̸= 0 for some x ∈ I. Then

0 ̸= am(b+ x) = amb︸︷︷︸
0

+ amx ∈ I

and since an /∈ I, we have (b + x) ∈ I. Hence, we get b ∈ I, a contradiction.
Thus, am(b+ x) = 0.

(3) Suppose that amx ̸= 0 for some x ∈ I. From (2), we have

am(b+ x) = amb︸︷︷︸
0

+ amx︸︷︷︸
̸=0

= 0,

a contradiction. Thus, amI = 0. □

Proposition 4. Let m and n be positive integers, I be a weakly (m,n)-prime
ideal of a ring R and (a, b) be an (m,n)-zero of I. Then aI, bI ⊆ Nil(R).
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Proof. By Lemma 1(3), amI = 0, and thus, aI ⊆ Nil(R). Now, let x ∈ I. By
Lemma 1(1), we have (a+x)b ∈ Nil(R) and note that ab ∈ Nil(R) as amb = 0.
Thus, bx = (a+ x)b− ab ∈ Nil(R) and so bI ⊆ Nil(R). □

Corollary 5. Let m and n be positive integers and I be a weakly (m,n)-prime
ideal of a ring R that is not (m,n)-prime. Then aI, bI ⊆ Nil(R) for some

a /∈ n
√
I and b /∈ I.

Proposition 5. Let m and n be positive integers and I be an ideal of a ring
R. Then I is a weakly (m,n)-prime ideal of R if and only if (I : x) is a weakly
(m,n)-prime ideal in R for all x ∈ reg(R)\I.
Proof. Note that for x ∈ reg(R)\I, (I : x) is proper in R. Let a, b ∈ R and
x ∈ reg(R)\I such that 0 ̸= amb ∈ (I : x). Since x is regular, we conclude
0 ̸= ambx ∈ I which implies either an ∈ I or bx ∈ I. Thus, an ∈ (I : x) or
b ∈ (I : x) as needed. The converse part follows directly since 1 ∈ reg(R)\I. □

If (I : x) is a weakly (m,n)-prime ideal in a ring R for some x ∈ reg(R) \
I, then I may not be a weakly (m,n)-prime ideal of a ring R. For example,
the ideal I = 0(+) ⟨2⟩ is not a weakly (1, 2)-prime ideal of the ring R = Z(+)Z
since (0, 0) ̸= (2, 0)(0, 1) ∈ I but (2, 0)2, (0, 1) /∈ I. However, for x = (2, 0) ∈
reg(R)\I, we have (I : x) = 0(+)Z is clearly weakly (1, 2)-prime in R.

Proposition 6. Let m and n be positive integers and {Iα}α∈Λ be a family of

weakly (m,n)-prime ideals of a ring R, where n
√
Iα = n

√
Iβ for all α, β ∈ Λ.

Then
⋂

α∈Λ Iα is a weakly (m,n)-prime ideal of R.

Proof. Let 0 ̸= amb ∈
⋂

α∈Λ Iα and b /∈
⋂

α∈Λ Iα for a, b ∈ R. Then b /∈ Iβ
for some β ∈ Λ. Since 0 ̸= amb ∈ Iβ , then by assumption, an ∈ Iβ and so

a ∈ n
√

Iβ . Thus, a ∈ n
√
Iα for all α ∈ Λ and an ∈

⋂
α∈Λ Iα. Thus,

⋂
α∈Λ Iα is a

weakly (m,n)-prime ideal of R. □

In general, if I and J are two weakly (m,n)-prime ideals with distinct nth-
radicals, then I ∩ J need not be weakly (m,n)-prime. For example, the ideals
⟨2̄⟩ and ⟨3̄⟩ are weakly (m,n)-prime ideals of Z12 for all positive integers n and
m, but ⟨2̄⟩ ∩ ⟨3̄⟩ = ⟨6̄⟩ is not so.

Next, we discuss the behavior of weakly (m,n)-prime ideals under ring ho-
momorphisms and localizations.

Proposition 7. Let f : R1 → R2 be a ring homomorphism and m, n be positive
integers.

(1) If f is a monomorphism and J is a weakly (m,n)-prime ideal of R2,
then f−1(J) is a weakly (m,n)-prime ideal of R1.

(2) If f is an epimorphism and I is a weakly (m,n)-prime ideal of R1

containing Ker(f), then f(I) is a weakly (m,n)-prime ideal of R2.

Proof. (1) Let a, b ∈ R1 such that 0 ̸= amb ∈ f−1(J) and b /∈ f−1(J). Since
Ker(f) = 0, we have 0 ̸= f(amb) = f(a)mf(b) ∈ J and f(b) /∈ J which imply
f(a)n = f(an) ∈ J . Hence an ∈ f−1(J), as required.
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(2) Let a := f(a1), b := f(b1) ∈ R2 such that 0 ̸= amb ∈ f(I) and b /∈ f(I).
Then 0 ̸= f(am1 b1) ∈ f(I) and since Ker(f) ⊆ I, we conclude 0 ̸= am1 b1 ∈ I.
Since I is weakly (m,n)-prime, then an1 ∈ I or b1 ∈ I. Therefore, an = f(an1 ) ∈
f(I) or b = f(b1) ∈ f(I). □

As a consequence of the previous proposition, we have the following corollary.

Corollary 6. Let I and J be proper ideals of a ring R, m, n be positive integers
and X be an indeterminate.

(1) If I is a weakly (m,n)-prime ideal of an overring R′ of R, then I ∩ R
is a weakly (m,n)-prime ideal of R.

(2) If I ⊆ J and J is a weakly (m,n)-prime ideal of R, then J/I is a weakly
(m,n)-prime ideal of R/I.

(3) If I ⊆ J , J/I is a weakly (m,n)-closed ideal of R/I and I is an (m,n)-
prime ideal of R, then J is a weakly (m,n)-prime ideal of R. In par-
ticular, in a ring in which the zero ideal is (m,n)-prime, every weakly
(m,n)-prime ideal is (m,n)-prime.

(4) I is weakly (m,n)-prime in R if and only if ⟨I,X⟩ is weakly (m,n)-
prime in R[X].

Proof. (1) and (2) follow clearly by Proposition 7.
(3) Suppose that 0 ̸= amb ∈ J for some a, b ∈ R. If amb ∈ I, then as I

is an (m,n)-prime ideal, we have an ∈ I ⊆ J or b ∈ I ⊆ J . Now, assume
that amb /∈ I. Then 0 + I ̸= (a + I)m(b + I) ∈ J/I implies (a + I)n ∈ J/I or
b+ I ∈ J/I as J/I is a weakly (m,n)-prime ideal. Thus, we have either an ∈ J
or b ∈ J as needed.

(4) Since R[X]/⟨X⟩ ∼= R and ⟨I,X⟩/⟨X⟩ ∼= I, the claim follows by (2) of
Proposition 7. □

A non-empty subset S of a ring R is said to be a multiplicatively subset if
1 ∈ S, and for each a, b ∈ S we have ab ∈ S. In the following, ZI(R), where I
is an ideal of R, denotes the set {x ∈ R : xy ∈ I for some y ∈ R\I}.

Proposition 8. Let m, n be positive integers, I be a proper ideal of a ring R
and S a multiplicatively closed subset of R such that I ∩ S = ∅.

(1) If I is a weakly (m,n)-prime ideal of R, then S−1I is a weakly (m,n)-
prime ideal of S−1R.

(2) If S ⊆ reg(R) and S−1I is a weakly (m,n)-prime ideal of S−1R with
S ∩ ZI(R) = ∅, then I is a weakly (m,n)-prime ideal of R.

Proof. (1) Let 0 ̸=
(

a
s1

)m (
b
s2

)
∈ S−1I for a

s1
, b
s2
∈ S−1R. Then 0 ̸= (ua)mb ∈

I for some u ∈ S which implies either (ua)n ∈ I or b ∈ I. Hence, either(
a
s1

)n

= unan

unsn1
∈ S−1I or b

s2
∈ S−1I.

(2) Let a, b ∈ R with 0 ̸= amb ∈ I. Then amb
1 =

(
a
1

)m (
b
1

)
∈ S−1I. If

amb
1 = 0, then uamb = 0 for some u ∈ S ∩ Z(R), a contradiction. Thus, amb

1
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is nonzero. This implies either
(
a
1

)n ∈ S−1I or
(
b
1

)
∈ S−1I. Thus, there are

some elements v, w ∈ S such that van ∈ I or wb ∈ I. Since S ∩ ZI(R) = ∅, we
conclude an ∈ I or b ∈ I. Thus, I is a weakly (m,n)-prime ideal of R. □

Let S be a multiplicatively closed subset of a ring. Now, we give a charac-
terization for a ring which has only one weakly (m,n)-prime ideal disjoint with
S.

Proposition 9. Let R be a ring and S a multiplicatively closed subset of R.
Then the following statements are equivalent.

(1) The zero ideal is the only weakly (m,n)-prime ideal of R disjoint with
S.

(2) The zero ideal is the only (m,n)-prime ideal of R disjoint with S.
(3) R is a domain and S−1R is a field.

Proof. (1)⇒(2) It is straightforward.
(2)⇒(3) It is well-known by [19, Proposition 2.12] that there exits a prime

ideal I of R such that I ∩ S = ∅. Hence, I is (m,n)-prime and so I = {0}.
Thus, R is a domain. Now, let 0

1 ̸=
a
s ∈ S−1Ṙ. We show that a

s ∈ U(S−1Ṙ). If
a ∈ S, then we are done. Assume that a /∈ S. If ⟨a⟩ ∩ S = ∅, then there exists
a prime (so, an (m,n)-prime) ideal J of R including ⟨a⟩. But, our assumption
yields that J = {0}, a contradiction. Thus, we have ⟨a⟩ ∩ S ̸= ∅ and we may
choose r ∈ ⟨a⟩ ∩ S. Choose r′ ∈ R such that r = ar′ and put s′ = sr′. Then
a
s
s′

r = 1
1 and a

s ∈ U(S−1Ṙ). Therefore, S−1R is a field.
(3)⇒(1) Assume that I is a nonzero weakly (m,n)-prime ideal of R disjoint

with S and let 0 ̸= a ∈ I. Then a
1 ̸=

0
1 as R is a domain. Since S−1R is a

field, there exists 0 ̸= b ∈ R and s ∈ S such that a
1
b
s = 1

1 . Hence, there is
some u ∈ S with uab = us and so u(ab − s) = 0. Since R is a domain, we
have ab = s ∈ I ∩ S, a contradiction. Thus, the zero ideal is the only weakly
(m,n)-prime ideal of R. □

Next, we characterize weakly (m,n)-prime ideals in Cartesian product of
rings.

Theorem 6. Let R1 and R2 be rings, R = R1 × R2 and m, n be positive
integers. A proper ideal I of R is weakly (m,n)-prime if and only if it has one
of the following forms:

(1) I = 0.
(2) I = J ×R2, where J is an (m,n)-prime ideal of R1.
(3) I = R1 ×K, where K is an (m,n)-prime ideal of R2.

Proof. Let I = J ×K be a nonzero weakly (m,n)-prime ideal of R, where J
and K are ideals of R1 and R2, respectively. Assume on contrary that both J
and K are proper. Without loss of generality, assume that J ̸= {0} so there
exists a nonzero element a in J . Then, (0, 0) ̸= (1, 0)m(a, 1) ∈ J × K which

implies either (1, 0)n ∈ J × K or (a, 1) ∈ J × K̇. Thus, J = R1 or K = R2
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which is a contradiction. Since I is proper, we may assume that J is proper
and K = R2. Let a, b ∈ R1 and amb ∈ J . Then (0, 0) ̸= (a, 1)m(b, 1) ∈ J ×R2

and it yields either (a, 1)n ∈ J × R2 or (b, 1) ∈ J × R2. Therefore, we have
an ∈ J or b ∈ J , and J is an (m,n)-prime ideal of R1. Similar to the argument
used above, if K is proper in R2 and J = R1, then K is an (m,n)-prime ideal
of R2. Conversely, if I = 0, then I is trivially weakly (m,n)-prime. Suppose
that I = J ×R2, where J is an (m,n)-prime ideal of R1 or I = R1 ×K, where
K is an (m,n)-prime ideal of R2. Then the claim follows from [17, Theorem
5]. □

By [17, Corollary 11], we have the following corollary.

Corollary 7. Let R1 and R2 be rings, R = R1 × R2 and m, n be positive
integers. Then a proper nonzero ideal I of R is weakly (m,n)-prime if and
only if it is (m,n)-prime.

Note that if I and J are weakly (m,n)-prime ideals of R1 and R2, respec-
tively, where I ̸= 0 or J ̸= 0, then I and J are proper. Thus, I × J is never
weakly (m,n)-prime ideal in R1 × R2. In a general manner, we have the fol-
lowing characterization.

Theorem 7. Let R1, R2, . . . , Rk be rings, R = R1 × R2 × · · · × Rk, I be a
proper nonzero ideal of R and m and n be positive integers. Then the following
statements are equivalent.

(1) I is a weakly (m,n)-prime ideal of R.
(2) I = R1 × · · · × Ij × · · · × Rk, where Ij is an (m,n)-prime ideal of Rj

for some j ∈ {1, 2, . . . , k}.
(3) I is an (m,n)-prime ideal of R.

Proof. (1)⇒(2) Suppose I = I1 × I2 × · · · × Ik is a weakly (m,n)-prime ideal
of R. We use the mathematical induction on k. The claim is true for k = 2
by Theorem 6. Suppose that the claim is true for k − 1 and we show that
it also holds for k. Put J = I1 × I2 × · · · × Ik−1. Then I = J × Ik. By
Theorem 6, we have either J = R1×R2×· · ·×Rk−1 and Ik is an (m,n)-prime
ideal of Rk or J is an (m,n)-prime ideal of Rk and Ik = Rk. If the former
case holds, then Ij = Rj for all j = 1, . . . , k − 1 and Ik is an (m,n)-prime
ideal of Rk. In the latter case, we conclude from our induction hypothesis that
J = R1 × · · · × Ij × · · · × Rk−1, where Ij is an (m,n)-prime ideal of Rj and
Ik = Rk. Thus I = R1×· · ·× Ij×· · ·×Rk−1×Rk, where Ij is an (m,n)-prime
ideal of Rj , we are done.

(2)⇒(3) [17, Theorem 5].
(3)⇒(1) Clear. □

We end this section by the following corollary.

Corollary 8. Let R1, R2, . . ., Rk be rings, R = R1 ×R2 × · · · ×Rk and m, n
be positive integers. Then the following statements are equivalent.
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(1) Every proper ideal of R is a weakly (m,n)-prime ideal.
(2) k = 2 and Ri’s are fields.

Proof. (1)⇒(2) Assume that k ≥ 3. Let I = {0} × {0} × R3 × · · · × Rk

and 0 ̸= a ∈ R3. Then 0 ̸= (1, 0, 1, . . . , 1)m(0, 1, a, . . . , 1, 1) ∈ I and since
I is weakly (m,n)-prime, then (1, 0, 1, . . . , 1)n ∈ I or (0, 1, a, . . . , 1, 1) ∈ I, a
contradiction. Thus, k = 2 and R = R1 × R2. Now, we show that R1 and R2

are fields. If, say, R1 is not a field, then there is a proper nonzero ideal I1 of
R1. Then, I = I1 × {0} is a weakly (m,n)-prime ideal of R which contradicts
(2) of Theorem 6. Therefore, R1 is a field. By a symmetric way, R2 is a field.

(2)⇒(1) Let R = R1 × R2, where R1 and R2 are fields. Then, the proper
ideals of R are R1 × {0}, {0} × {0}, {0} × R2 and all of them are weakly
(m,n)-prime ideal by Theorem 6. □

3. Weakly (m,n)-prime ideals in extensions of rings

Let R be a ring, M be an R-module and consider the idealization ring
R(+)M . For positive integers m and n, we start this section by justifying
some relations between weakly (m,n)-prime ideals of R and weakly (m,n)-
prime ideals of R(+)M .

Proposition 10. Let I be a proper ideal of a ring R, N be a submodule of an
R-module M and m,n be positive integers.

(1) If I(+)N is a weakly (m,n)-prime ideal of R(+)M , then I is a weakly
(m,n)-prime ideal of R.

(2) If I is a weakly (m,n)-prime ideal of R such that a ∈ ann(M) for any
(m,n)-zero (a, b) of I, then I(+)M is a weakly (m,n)-prime ideal of
R(+)M .

Proof. (1) Let a, b ∈ R with 0 ̸= amb ∈ I. Then 0 ̸= (a, 0)m(b, 0) ∈ I(+)M and
this yields either (a, 0)n ∈ I(+)M or (b, 0) ∈ I(+)M . Thus, an ∈ I or b ∈ I
and I is a weakly (m,n)-prime ideal of R.

(2) Let (a1, b1), (a2, b2) ∈ R(+)M such that (0, 0) ̸= (a1, b1)
m(a2, b2) =

(am1 a2, a
m
1 b2 + mam−1

1 a2b1) ∈ I(+)M . Then am1 a2 ∈ I. If am1 a2 ̸= 0, then
an1 ∈ I or a2 ∈ I and hence, (a1, b1)

n ∈ I(+)M or (a2, b2) ∈ I(+)M , we are
done. Assume that am1 a2 = 0 and neither an1 ∈ I nor a2 ∈ I. Then (a1, a2)
is an (m,n)-zero of I and our assumption implies that a1 ∈ ann(M). Thus,
am1 b2 +mam−1

1 a2b1 = 0 and we get (a1, b1)
m(a2, b2) = (0, 0), a contradiction.

Therefore, I(+)M is a weakly (m,n)-prime ideal of R(+)M . □

Remark 2. The condition “a ∈ ann(M) for any (m,n)-zero element (a, b) of I”
in (2) of Proposition 10 can not be discarded. For example, consider the ideal
⟨4̄⟩ (+)Z8 of the idealization ring Z8(+)Z8. Now, ⟨4̄⟩ is a weakly (3, 1)-prime
ideal of Z8 (Example 2). However, ⟨4̄⟩ (+)Z8 is not a weakly (3, 1)-prime ideal
of Z8(+)Z8 as (0̄, 0̄) ̸= (2̄, 1̄)3 = (0̄, 4̄) ∈ ⟨4̄⟩ (+)Z8 but (2̄, 1̄) /∈ ⟨4̄⟩ (+)Z8. Note
that (2̄, 2̄) is clearly a (3, 1)-zero of ⟨4̄⟩ but 2̄ /∈ ann(Z8).
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For ringsR andR′, let f : R→ R′ be a ring homomorphism and J be an ideal
of R′. The amalgamation of R and R′ along J with respect to f is the subring
R⋉fJ = {(a, f(a) + j) : a ∈ R, j ∈ J} ofR×R′. The amalgamated duplication
of a ring R along an ideal J is R ⋉ J = R ⋉IdR J = {(r, r + j) : r ∈ R, j ∈ J}
corresponds to the identity homomorphism IdR : R → R. For further details
and many properties of this ring, we refer the reader to [14] and [15]. For an
ideal I of R and an ideal K of f(R)+J , two corresponding ideals of R⋉f J can

be defined, [14]: I⋉f J = {(i, f(i) + j) : i ∈ I, j ∈ J} and K
f
= {(a, f(a)+j) :

a ∈ R, j ∈ J , f(a) + j ∈ K}.
Next, we determine when the ideal I ⋉f J is a weakly (m,n)-prime ideal in

R⋉f J for positive integers m and n.

Theorem 8. Consider the amalgamation of rings R and R′ along the ideal J
of R′ with respect to a homomorphism f . For positive integers m and n and
any ideal I of R, the following are equivalent.

(1) I ⋉f J is a weakly (m,n)-prime ideal of R⋉f J .
(2) I is a weakly (m,n)-prime ideal of R and for any (m,n)-zero (a, b) of

I, we have (f(a) + j1)
m(f(b) + j2) = 0 for all j1, j2 ∈ J .

Proof. (1)⇒(2) Suppose I ⋉f J is a weakly (m,n)-prime ideal of R ⋊⋉f J . Let
a, b ∈ R such that 0 ̸= amb ∈ I and b /∈ I. Then (0, 0) ̸= (a, f(a))m(b, f(b)) ∈
I⋉f J with (b, f(b)) /∈ I⋉f J and so by assumption, (a, f(a))n ∈ I⋉f J . Thus,
an ∈ I and I is a weakly (m,n)-prime ideal of R. Now, let (a, b) be an (m,n)-
zero of I. Then for every j1, j2 ∈ J , we have (a, f(a) + j1)

m(b, f(b) + j2) ∈
I ⋉f J but (a, f(a) + i)n /∈ I ⋉f J and (b, f(b)) /∈ I ⋉f J . Therefore, we get
(f(a) + j1)

m(f(b) + j2) = 0 since I ⋉f J is weakly (m,n)-prime in R ⋊⋉f J .
(2)⇒(1) Let (a, f(a)+j1), (b, f(b)+j2) ∈ R⋉f J such that (0, 0) ̸= (a, f(a)+

j1)
m(b, f(b) + j2) = (amb, (f(a) + j1)

m(f(b) + j2)) ∈ I ⋉f J . If amb ̸= 0, then
an ∈ I or b ∈ I as I is weakly (m,n)-prime in R. Hence, (a, f(a)+j1)

n ∈ I⋉f J
or (b, f(b) + j2) ∈ I ⋉f J as required. Now, suppose amb = 0. Then (f(a) +
j1)

m(f(b) + j2) ̸= 0 and so (a, b) is not an (m,n)-zero of I. Therefore, either
an ∈ I or b ∈ I. Hence, again (a, f(a)+ j1)

n ∈ I ⋉f J or (b, f(b)+ j2) ∈ I ⋉f J
and I ⋉f J is a weakly (m,n)-prime ideal of R ⋊⋉f J . □

In particular, we have:

Corollary 9. Let I and J be ideals of a ring R and m, n be positive integers.
Then I ⋉ J is a weakly (m,n)-prime ideal of R ⋉ J if and only if I is a
weakly (m,n)-prime ideal of R and for any (m,n)-zero (a, b) of I, we have
(a+ j1)

m(b+ j2) = 0 for all j1, j2 ∈ J .

Corollary 10. Let m, n, R, R′, J and f be as in Theorem 8. Then any weakly
(m,n)-prime ideal of R ⋉f J containing {0} × J is of the form I ⋉f J , where
I is a weakly (m,n)-prime ideal of R.

Proof. Let K be a weakly (m,n)-prime ideal of R ⋉f J containing {0} × J .
Consider the surjective homomorphism φ : R⋉f J → R defined by φ(a, f(a)+
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j) = a. ThenKer(φ) = {0}×J ⊆ K and so I := φ(K) is a weakly (m,n)-prime
ideal of R by Proposition 7. Since {0}×J ⊆ K, we conclude that K = I ⋉f J .
Moreover, I is a weakly (m,n)-prime ideal of R by Theorem 8. □

Theorem 9. Consider the amalgamation of rings R and R′ along the ideal J
of R′ with respect to an epimorphism f . Let K be an ideal of R′ and m,n be
positive integers. Then the following are equivalent.

(1) K̄f is a weakly (m,n)-prime ideal of R⋉f J .
(2) K is a weakly (m,n)-prime ideal of R′ and for every j1, j2 ∈ J , if

(f(a) + j1, f(b) + j2) is an (m,n)-zero of K, we have amb = 0.

Proof. (1)⇒(2) Suppose K̄f is a weakly (m,n)-prime ideal of R⋉f J . Let a′ =
f(a) and b′ = f(b) be any two elements in R′ such that 0′ ̸= f(a)mf(b) ∈ K,
where a, b∈R. Then (a, f(a)), (b, f(b))∈R⋉f J with (0, 0) ̸=(a, f(a))m(b, f(b))
= (amb, f(amb)) ∈ K̄f . By assumption, we have either (a, f(a))n ∈ K̄f or
(b, f(b)) ∈ K̄f . Thus, f(a)n ∈ K or f(b) ∈ K and K is a weakly (m,n)-prime
ideal of R′. Now, let j1, j2 ∈ J and f(a), f(b) ∈ R′ such that (f(a)+j1, f(b)+j2)
is an (m,n)-zero of K. Then (f(a)+j1)

m(f(b)+j2) = 0′ with (f(a)+j1)
n /∈ K

and (f(b) + j2) /∈ K. Hence, (a, f(a) + j1)
m(b, f(b) + j2) ∈ K̄f with (a, f(a) +

j1)
n /∈ K̄f and (b, f(b) + j2) /∈ K̄f . Since K̄f is weakly (m,n)-prime, then

(a, f(a) + j1)
m(b, f(b) + j2) = (0, 0) and so amb = 0 as needed.

(2)⇒(1) Let (0, 0) ̸= (a, f(a)+j1)
m(b, f(b)+j2) = (amb, (f(a)+j1)

m(f(b)+
j2)) ∈ K̄f for (a, f(a)+j1), (b, f(b)+j2) ∈ R⋉fJ . Then (f(a)+j1)

m(f(b)+j2) ∈
K. If (f(a)+j1)

m(f(b)+j2) ̸= 0′, then (f(a)+j1)
n ∈ K or f(b)+j2 ∈ K. Thus,

(a, f(a) + j1)
n ∈ K̄f or (b, f(b) + j2) ∈ K̄f and the result follows. Suppose

(f(a) + j1)
m(f(b) + j2) = 0′. Then amb ̸= 0 and so by our assumption, we

conclude that (f(a) + j1, f(b) + j2) is not an (m,n)-zero of K. Thus, again
either (f(a) + j1)

n ∈ K or f(b) + j2 ∈ K and so (a, f(a) + j1)
n ∈ K̄f or

(b, f(b)+j2) ∈ K̄f . Therefore, K̄f is a weakly (m,n)-prime ideal of R⋉f J . □

In general, if I (resp. K) is a weakly (m,n)-prime ideal of a ring R, then
I ⋉ J (resp. K̄) need not be weakly (m,n)-prime in R⋉ J .

Example 4. Consider the ideals I = K = ⟨4̄⟩ of the ring R = Z8 which
are weakly (3, 1)-prime (Example 2). Then for J = R, I ⋉ J and K̄ are not
weakly (3, 1)-prime ideals of R ⋉f J . Indeed, (2̄, 3̄) ∈ R ⋉f J with (0̄, 0̄) ̸=
(2̄, 3̄)3 = (0̄, 3̄) ∈ I ⋉ J but, (2̄, 3̄) /∈ I ⋉ J . Also, (3̄, 2̄) ∈ R ⋉f J with
(0̄, 0̄) ̸= (3̄, 2̄)3 = (3̄, 0̄) ∈ K̄ but, (3̄, 2̄) /∈ K̄. We note that (2̄, 1̄) is clearly an
(3, 1)-zero of I but (2̄ + 1̄)3(1̄ + 1̄) ̸= 0.
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