M-SYSTEM AND N-SYSTEM IN PO-SEMIGROUPS

SANG KEUN LEE

ABSTRACT Xie and Wu introduced an *m*-system in a *po*-semigroup. Kehayopulu gave characterizations of weakly prime ideals of *po*-semigroups and Lee and Kwon add two characterizations for weakly prime ideals. In this paper, we give a characterization of weakly prime ideals and a characterization of weakly semi-prime ideals in *po*-semigroups using *m*-system and *n*-system, respectively

Recently, Xic and Wu introduced an *m*-system in a *po*-semigroup ([9]). The definition of *m*-system in a *po*-semigroup is an extended form of the concept of *m*-system of semigroups without order (see the book of Petrich ([8])). Now we introduce the definition of *n*-system in a *po*-semigroup. Also, the definition of *n*-system in a *po*-semigroup is an extended form of the concept of *n*-system of semigroups without order Giri and Wazalwar studied the properties of *m*-system and *n*-system in semigroups ([1])

Kehayopulu([2, 3]) introduced the concepts of weakly prime ideals of ordered semigroups and gave the characterizations of weakly prime (weakly semi-prime) ideals of ordered semigroups analogous to the characterizations of weakly prime ideals of rings considered by Mc-Coy([5, 6]) and Steinfeld ([8]). And Lee and Kwon([4]) gave two characterizations of weakly prime ideals of ordered semigroups.

Received August 8, 2003 Revised December 2, 2003

²⁰⁰⁰ Mathematics Subject Classification 06F05

Key words and phrases po-semigroup, ideal, left(right) ideal, weakly prime, weakly semi-prime *m*-system, *n*-system, *m*-radical

In this paper, we give a new characterization of weakly prime ideals and a new characterization of weakly semi-prime ideals in a *po*-semigroup using an *m*-system and *n*-system, respectively.

A po-semigroup(: ordered semigroup) is an ordered set (S, \leq) at the same time a semigroup such that: $a \leq b \implies ca \leq cb$ and $ac \leq bc$ for all $a, b, c \in S$.

Let S be a po-semigroup and A a nonempty subset of S. A is called a *left*(resp. *right*) *ideal* of S if (1) $SA \subseteq A(\text{resp. } AS \subseteq A)$, (2) $a \in A, b \leq a$ for $b \in S \Longrightarrow b \in A$. A is called an *ideal* of S if it is a right and left ideal of S([2, 3, 4]).

An ideal T of a po-semigroup S is weakly prime if and only if for each $a, b \in S$ such that $(aSb] \subseteq T$, we have $a \in T$ or $b \in T$. T is a weakly semi-prime if and only if for each $a \in S$ such that $(aSa] \subseteq T$, we have $a \in T([2, 3])$.

For any subset H of S, let (H] denote the set of all element of X which are less than or equal to some $h \in H$, i.e.,

$$(H] := \{t \in S | t \leq h \text{ for some } h \in H\}$$

DEFINITION 1. Let M be a non-empty subset of a *po*-semigroup S. M is called an *m*-system if for every $a, b \in M$ there exists $x \in S$ such that $(axb] \cap M \neq \emptyset$, and M is called a strong *m*-system if for every $a, b \in M$ there exists $x \in S$ such that $axb \in M$.

Let M be a non-empty subset of a *po*-semigroup S. N is called an *n*-system if for every $a \in M$ there exists $x \in S$ such that $(axa] \cap N \neq \emptyset$, and N is called a *strong n*-system if for every $a \in M$ there exists $x \in S$ such that $axa \in N$.

The concepts of "m-system" and "strong m-system" in a semigroup (without order) are coincide

REMARK. If M is a strong m-system, then (M] is also Indeed: If $x, y \in (M]$, then there exist $m_1, m_2 \in M$ such that $x \leq m_1$ and $y \leq m_2$. Since M is a strong m-system, $m_1 z m_2 \in M$ for some $z \in S$. Thus $xzy \leq m_1 z m_2 \in M$, and so $xzy \in (M]$. Therefore (M] is a strong m-system.

234

We denote by I(a)(resp. L(a), R(a)) the ideal(resp. left ideal, right ideal) of S generated by a. One can easily prove that:

$$I(a)=(a\cup Sa\cup aS\cup SaS], \quad L(a)=(a\cup Sa], \quad R(a)=(a\cup aS].$$

We note the following lemma:

LEMMA 1. ([2, 3, 4]) Let S be a po-semigroup. Then we have 1) $A \subseteq (A]$ for all $A \subseteq S$. 2) $(A] \subseteq (B]$ for $A \subseteq B \subseteq S$. 3) $(A](B] \subseteq (AB]$ for all $A, B \subseteq S$ 4) $((A]] \subseteq (A]$ for all $A \subseteq S$. 5) For every left ideal(resp. right ideal, ideal) T of S, (T] = T. 6) If A, B are ideals of S, then $(AB], A \cap B$ are ideals of S. 7) For $a \in S$, (SaS] is an ideal of S. THEOREM A. ([2, 4]) Let S be a po-semigroup and T an ideal of

S. The following are equivalent.

(1) T is weakly prime.

(2) If $a, b \in S$ such that $(aSb] \subseteq T$, then $a \in T$ or $b \in T$.

From Theorem A, we have the following theorem 1.

THEOREM 1. A proper ideal A of a po-semigroup S is weakly prime if and only if $S \setminus A$ is an m-system.

Proof. Suppose that a proper ideal A is weakly prime and $a, b \in S \setminus A$ Then $a \notin A$ and $b \notin A$. By (2) of Theorem A, $(aSb] \notin A$. Now we show that $axb \in S \setminus A$ for some $x \in S$. Suppose that $axb \in A$ for all $x \in S$. Then $aSb \subseteq A$. Thus $(aSb] \subseteq (A] = A$ by (5) of Lemma 1. It is impossible. Hence $axb \in S \setminus A$ for some $x \in S$, and so $(axb] \cap (S \setminus A) \neq \emptyset$. Therefore $S \setminus A$ is an *m*-system.

Conversely, suppose that $S \setminus A$ is an *m*-system. Then for $a, b \in S \setminus A$ there exists $x \in S$ such that $(axb] \cap (S \setminus A) \neq \emptyset$. Thus there exists y in S such that $ayb \in (axb] \cap (S \setminus A)$, and so $ayb \notin A$. Hence $aSb \notin A$, and so $(aSb] \notin A$. This is the contrapositive form of (2) of Theorem A. Therefore A is weakly prime by (1) of Theorem A. \Box

THEOREM B. ([2]) If A is an ideal in a po-semigroup of S then the following are equivalent.

(1) A is weakly semi-prime.

(2) If $(aSa] \subseteq A$, then $a \in A$

From Theorem B we have the following theorem 2.

THEOREM 2. A proper ideal A of a po-semigroup S is weakly semi-prime if and only if $S \setminus A$ is an n-system.

Proof. Suppose that A is weakly semi-prime of S and $a \in S \setminus A$. Then $a \notin A$. By (2) of Theorem B, $(aSa] \notin A$. Now we show that $axa \in S \setminus A$ for some $x \in S$ Suppose that $axa \in A$ for all $x \in S$. Then $aSa \subseteq A$. Thus $(aSa] \subseteq (A] = A$ by (5) of Lemma 1. It is impossible. Hence $axa \in S \setminus A$ for some $x \in S$. Therefore $(axa] \cap (S \setminus A) \neq \emptyset$, and so $S \setminus A$ is an n-system.

Conversely, suppose that $S \setminus A$ is an *n*-system. Then for $a \in S \setminus A$, there exists $x \in S$ such that $(axa] \cap (S \setminus A) \neq \emptyset$. Thus there exists $y \in S$ such that $aya \in (axa] \cap (S \setminus A)$, and so $aya \notin A$. Hence $aSa \notin A$, and so $(aSa] \notin A$. This is the contrapositive form of (2) of Theorem B. Therefore A is weakly semi-prime by (1) of Theorem B.

THEOREM 3 If (N] is a strong *n*-system containing *a* in a posemigroup *S*, then there exists a strong *m*-system (M] containing *a* such that $(M] \subseteq (N]$.

Proof. Let (N) be a strong *n*-system containing *a*. Then there exists $x \in S$ such that $axa \in (N]$. Thus $aSa \cap (N] \neq \emptyset$. We can take $a_1 \in aSa \cap (N]$. Since $a_1 \in (N)$ and (N] is an *n*-system, there exists $x_1 \in S$ such that $a_1x_1a_1 \in (N]$. Also we can take $a_2 \in a_1Sa_1 \cap (N]$. Since $a_2 \in (N]$ and (N] is an *n*-system, there exists $x_2 \in S$ such that $a_2x_1a_2 \in (N]$. Continuing this process, we can take $a_{i+1} \in (a_iSa_i] \cap (N]$. Now we construct M as follows;

$$M := \{a, a_1, a_2, \cdots a_i, a_{i+1}, \cdots \}.$$

236

Then (M] is a strong *m*-system. Indeed: Let $b_i, b_j \in (M]$ and i < j. Then there exist $a_i, a_j \in M$ such that $b_i \leq a_i$ and $b_j \leq a_j$. We have

$$a_{j+1} \in a_j S a_j \subseteq (a_{j-1} S a_{j-1}) S a_j \subseteq a_{j-1} S a_j$$

$$\subseteq (a_{j-2}Sa_{j-2})Sa_j \subseteq a_{j-2}Sa_j \subseteq \cdots \subseteq a_iSa_j.$$

Thus $a_{j+1} = a_i x a_j$ for some $x \in S$. Therefore $b_i x b_j \leq a_i x a_j = a_{j+1} \in M$. It follows that (M] is a strong *m*-system.

Finally, we note that $a \in M \subseteq (N]$ Therefore $(M] \subseteq ((N]] = (N]$.

A semigroup S is a po-semigroup with the partial order $\Delta := \{(a, a) \mid \forall a \in S\}$. Hence (A] = A for a subset A of a semigroup S. Since the concept *m*-system and strong *m*-system in a semigroup (without order) are coincide. Therefore we have the following corollaries.

COROLLARY 1. ([1]) A proper ideal A of a semigroup S is weakly prime if and only if $S \setminus A$ is an m-system.

COROLLARY 2. ([1]) A proper ideal A of a semigroup S is weakly semi-prime if and only if $S \setminus A$ is an n-system.

COROLLARY 3. ([1]) If N is an n-system in a semigroup S and containing an element a of S, then there exists an m-system M of S such that $a \in M$ and $M \subseteq N$.

Now we give a new concept in a *po*-semigroup.

DEFINITION 2. The *m*-radical of an ideal A in a po-semigroup S is the set consisting of those elements $r \in S$ with the property that every strong *m*-system M in S which contains r meets A(that is, it has nonempty intersection with A). It is denoted by \sqrt{A} .

 $\sqrt{A} = \{r \in S \mid M \cap A \neq \emptyset \text{ for every strong } m$ -system M containing $x \}$ (cf. [1]).

We give the following lemma.

S. K LEE

LEMMA 2. Let A be an ideal of a po-semigroup S and $x \in S$. If $x \in \sqrt{A}$, then $x^n \in A$ for a positive integer n.

Proof. If $x \in \sqrt{A}$, then $M \cap A \neq \emptyset$ for every strong *m*-system M containing x. Consider $B = \{x^i \mid i = 1, 2, \dots\}$. Then for any x^i and x^j in B, $x^i x x^j = x^{i+1+j} \in B$. Thus B is a strong *m*-system containing x, and so $B \cap A \neq \emptyset$. Hence $x^n \in A$ for some positive integer n.

THEOREM 4. If A is an ideal in a po-semigroup S, then $\sqrt{A} = \bigcap_{\alpha} P_{\alpha}$ for all weakly prime ideal P_{α} containing A.

Proof. Let P_{α} be a weakly prime ideal containing A and $x \in \sqrt{A}$. Then by Lemma 2, $x^n \in A \subseteq P_{\alpha}$ for some positive integer n and for all α . Since each P_{α} is weakly prime, $x \in P_{\alpha}$ for all α . Therefore $\sqrt{A} \subseteq \bigcap_{\alpha} P_{\alpha}$ for all weakly prime ideals P_{α} containing A

Now we show that $\bigcap_{\alpha} P_{\alpha} \subseteq \sqrt{A}$ for all weakly prime ideals P_{α} containing A. Suppose $x \notin \sqrt{A}$. Then there exists a strong m-system M containing x such that $M \cap A = \emptyset$. Consider the set B of all ideals I of S such that $A \subseteq I$ and $M \cap I = \emptyset$. Since $A \subseteq A$ and $M \cap A = \emptyset$, we get $A \in \mathcal{B}$, and so \mathcal{B} is non-empty. Then (\mathcal{B}, \subseteq) is an ordered set Let C be a chain in \mathcal{B} . Then the set $\bigcup_{c \in C} C$ is an ideal of S and is an upper bound of C in \mathcal{B} . By Zoin's Lemma, there exists a maximal ideal P such that $A \subseteq P$ and $M \cap P = \emptyset$ Since $x \in M$, we note that $x \notin P$. Now we claim that P is weakly prime. If $a, b \notin P$, then $P \subsetneq P \cup I(a)$ and $P \subsetneq P \cup I(b)$ Since $P \cup I(a)$ and $P \cup I(b)$ are ideals, $M \cap (P \cup I(a)) \neq \emptyset$ and $M \cap (P \cup I(a)) \neq \emptyset$ by the maximality of P. Hence there exist $m_1 \in M \cap (P \cup I(a))$ and $m_2 \in M \cap (P \cup I(b))$. Since M is an m-system, $m_1 z m_2 \in M$ for some z in S. Moreover $m_1 z m_2 \in I(a) SI(b) \subseteq I(a)I(b)$. If $I(a)I(b) \subseteq P$, then

$$egin{aligned} m_1zm_2 \in (P \cup I(a))S(P \cup I(b)) \ &= PSP \cup I(a)SP \cup PSI(b) \cup I(a)SI(b) \ &\subseteq P. \end{aligned}$$

238

Thus $m_1 z m_2 \in M \cap P$, and so $M \cap P \neq \emptyset$. It is impossible. Hence $I(a)I(b) \nsubseteq P$ for $a \notin P$ and $b \notin P$. This is the contrapositive form (3) of Theorem A. Therefore P is a weakly prime ideal by (1) of Theorem A.

THEOREM 5. If A and B are any two ideals in a po-semigroup S, then:

(1)
$$A \subseteq B \implies \sqrt{A} \subseteq \sqrt{B}$$
.
(2) $\sqrt{\sqrt{A}} = \sqrt{A}$.
(3) $\sqrt{AB} = \sqrt{A \cap B} = \sqrt{A} \cap \sqrt{B}$.

Proof. (1) Let $x \in \sqrt{A}$ Then for every strong *m*-system *M* containing $x, M \cap A \neq \emptyset$. Since $A \subseteq B, M \cap B \neq \emptyset$ Therefore $x \in \sqrt{B}$ (2) Since $A \subseteq \sqrt{A}, \sqrt{A} \subseteq \sqrt{\sqrt{A}}$ by (1).

For the reverse inclusion, suppose that $x \in \sqrt{\sqrt{A}}$. Then for every strong *m*-system *M* containing $x, M \cap \sqrt{A} \neq \emptyset$. Thus there exists $y \in M \cap \sqrt{A}$. Since $y \in \sqrt{A}$, for every strong *m*-system *M'* containing *y* such that $M' \cap A \neq \emptyset$. Since *M* is a strong *m*-system containing *y*, $M \cap A \neq \emptyset$. Therefore $x \in \sqrt{A}$. It follows that $\sqrt{\sqrt{A}} = \sqrt{A}$.

(3) Since A and B are ideals in S, we have $AB \subseteq AS \subseteq A$ and $AB \subseteq SB \subseteq B$. Thus $AB \subseteq A \cap B$, and so $\sqrt{AB} \subseteq \sqrt{A \cap B}$ by (1) Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, we have $\sqrt{A \cap B} \subseteq \sqrt{A}$ and $\sqrt{A \cap B} \subseteq \sqrt{B}$. Hence $\sqrt{A \cap B} \subseteq \sqrt{A} \cap \sqrt{B}$ Therefore $\sqrt{AB} \subseteq \sqrt{A} \cap \sqrt{B} \subseteq \sqrt{A} \cap \sqrt{B}$

For the reverse inclusion, suppose that $x \in \sqrt{A} \cap \sqrt{B}$ Then for every strong *m*-system *M* containing *x*, $M \cap A \neq \emptyset$ and $M \cap B \neq \emptyset$. Now let $y \in M \cap A$ and $z \in M \cap B$. Since *M* is a strong *m*-system, $ytz \in M$ for some $t \in S$ Also $ytz \in ASB \subseteq AB$. Thus $M \cap AB \neq \emptyset$, and so $x \in \sqrt{AB}$. It follows that $\sqrt{AB} = \sqrt{A \cap B} = \sqrt{A} \cap \sqrt{B}$. \Box

THEOREM 6 Let $\{P_{\alpha}\}$ be a family of weakly prime ideals in a po-semigroup S which are totally ordered by the set inclusion. Then $\bigcap P_{\alpha}$ is an weakly prime ideal.

Proof Let I and J be ideals of S. Assume that $IJ \subseteq \bigcap_{\alpha} P_{\alpha}$ and $I \not\subseteq \bigcap_{\alpha} P_{\alpha}$. Then for some α , $I \not\subseteq P_{\alpha}$ and $J \subseteq P_{\alpha}$ since P_{α} is weakly prime. Thus $J \subseteq P_{\beta}$ for all $\beta \geq \alpha$. Suppose that there exists $\gamma < \alpha$ such that $J \not\subseteq P_{\gamma}$. Then $I \subseteq P_{\gamma}$ and so $I \subseteq P_{\alpha}$. This is impossible. Thus $J \subseteq P_{\beta}$ for all β . Hence $\bigcap_{\alpha} P_{\alpha}$ is weakly prime. \Box

REFERENCES

- R. D Giri and A K Wazalwar, Prime ideals and prime radicals in noncommutative semigroups, Kyungpook Math J 33 (1993), 37-48
- [2] N Kehayopulu, On weakly prime ideals of ordered semigroups, Math Japon 35 (1990), 1051-1056
- [3] N Kehayopulu, On prime, weakly prime ideals in ordered semigroups, Semigroup Forum 44 (1992), 341-346
- [4] S K Lee and Y I Kwon, A note on weakly prime ideals of ordered semigroups, Math. Japon 50 (1999), 243-246
- [5] N H McCoy, Prime ideals in general rings, Amer. J Math 71 (1949), 823-833.
- [6] N H. McCoy, The theory of rings, MacMillan
- [7] M. Petrich, Introduction to semigroups, Publ Merrill, Columbus (1973).
- [8] O Steinfeld, Remarks on a paper of N H McCoy, Publ Math Debrecen 3 (1953-54), 171-173
- [9] Xiang-Yun Xie and Ming-Fen Wu, On quasi-prime, weakly quasi-prime left ideals in ordered semigroups, PU M A 6 (1994), 105-120

Department of Mathematics College of Education Gyeongsang National University Jinju 660-701, Korea *E-mail*: sklee@gsnu.ac.kr