• Title/Summary/Keyword: primal-dual interior-point methods

Search Result 20, Processing Time 0.021 seconds

ON COMPLEXITY ANALYSIS OF THE PRIMAL-DUAL INTERIOR-POINT METHOD FOR SECOND-ORDER CONE OPTIMIZATION PROBLEM

  • Choi, Bo-Kyung;Lee, Gue-Myung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.2
    • /
    • pp.93-111
    • /
    • 2010
  • The purpose of this paper is to obtain new complexity results for a second-order cone optimization (SOCO) problem. We define a proximity function for the SOCO by a kernel function. Furthermore we formulate an algorithm for a large-update primal-dual interior-point method (IPM) for the SOCO by using the proximity function and give its complexity analysis, and then we show that the new worst-case iteration bound for the IPM is $O(q\sqrt{N}(logN)^{\frac{q+1}{q}}log{\frac{N}{\epsilon})$, where $q{\geqq}1$.

NEW COMPLEXITY ANALYSIS OF IPM FOR $P_*({\kappa})$ LCP BASED ON KERNEL FUNCTIONS

  • Cho, Gyeong-Mi;Kim, Min-Kyung;Lee, Yong-Hoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.4
    • /
    • pp.227-238
    • /
    • 2008
  • In this paper we extend primal-dual interior point algorithm for linear optimization (LO) problems to $P_*({\kappa})$ linear complementarity problems(LCPs) ([1]). We define proximity functions and search directions based on kernel functions, ${\psi}(t)=\frac{t^{p+1}-1}{p+1}-{\log}\;t$, $p{\in}$[0, 1], which is a generalized form of the one in [16]. It is the first to use this class of kernel functions in the complexity analysis of interior point method(IPM) for $P_*({\kappa})$ LCPs. We show that if a strictly feasible starting point is available, then new large-update primal-dual interior point algorithms for $P_*({\kappa})$ LCPs have $O((1+2{\kappa})nlog{\frac{n}{\varepsilon}})$ complexity which is similar to the one in [16]. For small-update methods, we have $O((1+2{\kappa})\sqrt{n}{\log}{\frac{n}{\varepsilon}})$ which is the best known complexity so far.

  • PDF

NEW INTERIOR POINT METHODS FOR SOLVING $P_*(\kappa)$ LINEAR COMPLEMENTARITY PROBLEMS

  • Cho, You-Young;Cho, Gyeong-Mi
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.3
    • /
    • pp.189-202
    • /
    • 2009
  • In this paper we propose new primal-dual interior point algorithms for $P_*(\kappa)$ linear complementarity problems based on a new class of kernel functions which contains the kernel function in [8] as a special case. We show that the iteration bounds are $O((1+2\kappa)n^{\frac{9}{14}}\;log\;\frac{n{\mu}^0}{\epsilon}$) for large-update and $O((1+2\kappa)\sqrt{n}log\frac{n{\mu}^0}{\epsilon}$) for small-update methods, respectively. This iteration complexity for large-update methods improves the iteration complexity with a factor $n^{\frac{5}{14}}$ when compared with the method based on the classical logarithmic kernel function. For small-update, the iteration complexity is the best known bound for such methods.

  • PDF

A LARGE-UPDATE INTERIOR POINT ALGORITHM FOR $P_*(\kappa)$ LCP BASED ON A NEW KERNEL FUNCTION

  • Cho, You-Young;Cho, Gyeong-Mi
    • East Asian mathematical journal
    • /
    • v.26 no.1
    • /
    • pp.9-23
    • /
    • 2010
  • In this paper we generalize large-update primal-dual interior point methods for linear optimization problems in [2] to the $P_*(\kappa)$ linear complementarity problems based on a new kernel function which includes the kernel function in [2] as a special case. The kernel function is neither self-regular nor eligible. Furthermore, we improve the complexity result in [2] from $O(\sqrt[]{n}(\log\;n)^2\;\log\;\frac{n{\mu}o}{\epsilon})$ to $O\sqrt[]{n}(\log\;n)\log(\log\;n)\log\;\frac{m{\mu}o}{\epsilon}$.

On the Relationship between $\varepsilon$-sensitivity Analysis and Sensitivity Analysis using an Optimal Basis

  • Park, Chan-Kyoo;Kim, Woo-Je;Park, Soondal
    • Management Science and Financial Engineering
    • /
    • v.10 no.2
    • /
    • pp.103-118
    • /
    • 2004
  • $\epsilon$-sensitivity analysis is a kind of methods for performing sensitivity analysis for linear programming. Its main advantage is that it can be directly applied for interior-point methods with a little computation. Although $\epsilon$-sensitivity analysis was proposed several years ago, there have been no studies on its relationship with other sensitivity analysis methods. In this paper, we discuss the relationship between $\epsilon$-sensitivity analysis and sensitivity analysis using an optimal basis. First. we present a property of $\epsilon$-sensitivity analysis, from which we derive a simplified formula for finding the characteristic region of $\epsilon$-sensitivity analysis. Next, using the simplified formula, we examine the relationship between $\epsilon$-sensitivity analysis and sensitivity analysis using optimal basis when an $\epsilon$-optimal solution is sufficiently close to an optimal extreme solution. We show that under primal nondegeneracy or dual non degeneracy of an optimal extreme solution, the characteristic region of $\epsilon$-sensitivity analysis converges to that of sensitivity analysis using an optimal basis. However, for the case of both primal and dual degeneracy, we present an example in which the characteristic region of $\epsilon$-sensitivity analysis is different from that of sensitivity analysis using an optimal basis.

Warm-Start of Interior Point Methods for Multicommodity Network Flow Problem (다수상품 유통문제를 위한 내부점 방법에서의 Warm-Start)

  • 임성묵;이상욱;박순달
    • Korean Management Science Review
    • /
    • v.21 no.1
    • /
    • pp.77-86
    • /
    • 2004
  • In this paper, we present a methodology for solving the multicommodity network flow problems using interior point methods. In our method, the minimum cost network flow problem extracted from the given multicommodity network flow problem is solved by primal-dual barrier method in which normal equations are solved partially using preconditioned conjugate gradient method. Based on the solution of the minimum cost network flow problem, a warm-start point is obtained from which Castro's specialized interior point method for multicommodity network flow problem starts. In the computational experiments, the effectiveness of our methodology is shown.

Finding an initial solution and modifying search direction by the centering force in the primal-dual interior point method (원쌍대 내부점기법에서 초기해 선정과 중심화 힘을 이용한 개선 방향의 수정)

  • 성명기;박순달
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.530-533
    • /
    • 1996
  • This paper deals with finding an initial solution and modifying search direction by the centrering force in the predictor-corrector method which is a variant of the primal-dual barrier method. These methods were tested with NETLIB problems. Initial solutions which are located close to the center of the feasible set lower the number of iterations, as they enlarge the step length. Three heuristic methods to find such initial solution are suggested. The new methods reduce the average number of iterations by 52% to at most, compared with the old method assigning 1 to initial valurs. Solutions can move closer to the central path fast by enlarging the centering force in early steps. It enlarge the step length, so reduces the number of iterations. The more effective this method is the closer the initial solution is to the boundary of the feasible set.

  • PDF

Interior Point Methods for Multicommodity Flow Problems (다수상품 흐름문제를 위한 내부점 방법)

  • Lim, Sung-Mook;Seol, Tong-Ryeol;Park, Soon-Dal
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.3
    • /
    • pp.274-280
    • /
    • 2001
  • In this research, we develop a specialized primal-dual interior point solver for the multicommodity flow problems (MCFP). The Castro's approach that exploits the problem structure is investigated and several aspects that must be considered in the implementation are addressed. First, we show how preprocessing techniques for linear programming(LP) are adjusted for MCFP. Secondly, we develop a procedure that extracts a network structure from the general LP formulated MCFP. Finally, we consider how the special structure of the mutual capacity constraints is exploited. Results of comupational comparison between our solver and a general interior point solver are also included.

  • PDF

POLYNOMIAL CONVERGENCE OF PREDICTOR-CORRECTOR ALGORITHMS FOR SDLCP BASED ON THE M-Z FAMILY OF DIRECTIONS

  • Chen, Feixiang;Xiang, Ruiyin
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1285-1293
    • /
    • 2011
  • We establishes the polynomial convergence of a new class of path-following methods for semidefinite linear complementarity problems (SDLCP) whose search directions belong to the class of directions introduced by Monteiro [9]. Namely, we show that the polynomial iteration-complexity bound of the well known algorithms for linear programming, namely the predictor-corrector algorithm of Mizuno and Ye, carry over to the context of SDLCP.

POLYNOMIAL CONVERGENCE OF PRIMAL-DUAL ALGORITHMS FOR SDLCP BASED ON THE M-Z FAMILY OF DIRECTIONS

  • Chen, Feixiang
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.127-133
    • /
    • 2012
  • We establish the polynomial convergence of a new class of path-following methods for SDLCP whose search directions belong to the class of directions introduced by Monteiro [3]. We show that the polynomial iteration-complexity bounds of the well known algorithms for linear programming, namely the short-step path-following algorithm of Kojima et al. and Monteiro and Alder, carry over to the context of SDLCP.