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ABSTRACT. The purpose of this paper is to obtain new complexity results for a second-order
cone optimization (SOCO) problem. We define a proximity function for the SOCO by a kernel
function. Furthermore we formulate an algorithm for a large-update primal-dual interior-point
method (IPM) for the SOCO by using the proximity function and give its complexity analysis,

and then we show that the new worst-case iteration bound for the IPM is O(q
√

N(log N)
q+1

q

log N
ε
), where q = 1.

1. INTRODUCTION

Primal and dual interior-point methods (IPMs) have been well known as the most effective
methods for solving wide classes of optimization problems, for example, linear optimization
(LO) problem, quadratic optimization problem (QOP), semidefinite optimization (SDO) prob-
lem, SOCO problem and convex optimization problem (CP).

The choice of parameter θ, the so-called barrier update parameter, plays an important role in
the both in theory and practice of IPMs. Usually, if θ is a constant which is independent of the
dimension of a problem, then the algorithm is called a large-update method. If it depends on
the dimension, then the algorithm is said to be a small-update method. Large-update methods
are much more efficient than small-update methods in practice ([1]). The gap between theory
and practice has been referred to as irony of IPMs ([28]). Recently, many authors have tried to
reduce the gap of the worst-case iteration bound between large-update IPM and small-update
IPM. Using self-regular proximity functions instead of classical logarithmic barrier functions,
Peng et al. ([23, 24, 25, 26, 27]) improved the complexity of large-update IPMs for LO, SDO
and SOCO. They obtained the worst-case iteration bound O(

√
n log n log n

ε ) for large-update
IPMs of LO and SDO, and the worst-case iteration bound O(

√
N log N log N

ε ) for SOCO
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([23, 24, 25, 26, 27]). After that, Bai and Wang in [6] and Bai et al. in [7] defined proximity
functions of large-update IPMs for SOCO and obtained the bound O(

√
N log N log N

ε ).
Recently, Bai et al. ([4]) introduced a new class of kernel functions. The class was defined

by some simple conditions on the kernel function and its derivatives, and presented a simple
and unified computational scheme for the complexity analysis of kernel functions in the new
class. The best iteration bound, which was given by Bai et al. ([4]), is O(

√
n log n log n

ε ).
Very recently, following the approach of Bai et al. ([4]) for LO, Cho et al. ([8]), Cho and Kim
([9]) and Cho ([10]) used new kernel functions to calculate the iteration bound for a P∗(κ)
linear complementarity problem (P∗(κ) LCP).

The aim of this paper is to obtain new complexity result for an SOCO problem using a new
proximity function and following the approach of Bai et al. ([4]).

In this paper, we define a new proximity function for the SOCO by a kernel function which
is suggested by Amini and Peyghami for LO in [2], Amini and Peyghami for P∗(κ) LCP in
[2] and Choi and Lee for SDO in [11]. Using the new proximity function for the SOCO,
we formulate an algorithm for a large-update primal-dual IPM for the SOCO and we give its
complexity analysis, and then we show that the new worst-case iteration bound for our IPM is

O(q
√

N(log N)
q+1

q log
N

ε
),

where q = 1.
Now we recall the definition of SOCO, which is the problem of minimizing a linear objective

function subject to the constraint set defined by linear equalities and product of second-order
cones (see [20] for applications of SOCO). First we give the definitions of second-order cone,
its related matrix and induced vector ordering. The set Kj is the second-order cone of dimen-
sion nj defined as

Kj := {(xj
1, · · · , xj

nj
)T ∈ Rnj | (xj

1)
2 −

nj∑

i=2

(xj
i )

2 = 0, xj
1 = 0 },

j = 1, · · · , N. Let Kj
+ be the interior of Kj . For any xj = (xj

1, · · · , xj
nj )T ∈ Rnj , let us

define a matrix

mat(xj) =

(
xj

1 xj
2:nj

(xj
2:nj

)T xj
1Enj−1

)
,

where xj
2:nj

= (xj
2, · · · , xj

nj ) and Enj−1 denotes the identity matrix in R(nj−1)×(nj−1), j =
1, · · · , N. The vector xj ∈ Kj means that mat(xj) is a symmetric positive semidefinite
matrix, that is, mat(xj) º 0. As standard, the notation xj ºKj 0 (or xj ÂKj 0) means that
xj ∈ Kj (or xj ∈ Kj

+). Let K = K1 × · · · × KN , K+ = K1
+ × · · · × KN

+ and n =∑N
j=1 nj . Then for a vector x = ((x1)T , (x2)T , · · · , (xN )T )T ∈ Rn, x ºK 0 means that

xj ∈ Kj for all j = 1, · · · , N .
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Consider the following second-order cone optimization problem (shortly, SOCO):

SOCO Minimize cT x

subject to Ax = b, x ºK 0,

and its dual problem:

SOCD Maximize bT y

subject to AT y + s = c, s ºK 0,

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, x = ((x1)T , (x2)T , · · · , (xN )T )T ∈ Rn, and xj ∈ Rnj ,
j = 1, · · · , N. The matrix A is assumed to be of full row rank, i.e., rankA = m. In the sequel,
we assume that both SOCO and SOCD satisfy the interior-point condition (IPC), that is, there
exists (x0, y0, s0) such that Ax0 = b, x0 ÂK 0, AT y0 + s0 = c, s0 ÂK 0. Then we have
an optimal solution (x, y, s) of SOCO and SOCD.

Jordan-algebraic techniques have proved to be very useful for the analysis of convex op-
timization problems over symmetric cones. See, e.g., [12, 13, 14, 15, 16, 21, 29, 32]. The
Euclidean Jordan algebra for the second order cone Kj is defined by a bilinear operator

xj ◦ sj = ((xj)T sj , x1
jsj

2:nj
+ s1

jxj
2:nj

)T ,

where xj , sj ∈ Rnj . Obviously, the Jordan product ◦ is commutative, i.e., xj ◦ sj = sj ◦ xj

for each j. But its associativity does not hold in general and the cone K is not closed under the
Jordan product. It is also easy to verify that for any xj , sj ∈ Rnj one has xj ◦sj = mat(xj)sj .
We define, mat(x) := diag(mat(x1), · · · , mat(xN )) and x ◦ s := ((x1 ◦ s1)T , · · · , (xN ◦
sN )T )T . Then we have the following lemma which is well-known:

Lemma 1.1. [18] The following statements are equivalent:
(i) x ºK 0, s ºK 0 and xT s = 0;
(ii) x ºK 0, s ºK 0 and mat(x)s = 0;
(iii) x ºK 0, s ºK 0 and x ◦ s = 0.

Using Lemma 1.1, we can easily check that a pair of optimal solutions of SOCO and SOCD is
equivalent to solving the following Newton system:





Ax = b, x ºK 0,

AT y + s = c, s ºK 0,

x ◦ s = 0.

(1.1)

The basic idea of primal-dual IPMs is to replace the third equation in (1.1), the so-called
complementarity condition for SOCO and SOCD, by the parameterized equation x ◦ s =
µẽ with µ > 0, where ẽ = ((ẽ1)T , · · · , (ẽN )T )T ∈ Rn, ẽj = (1, 0, · · · , 0)T ∈ Rnj , j =
1, · · · , N. From the system (1.1) , we have the following parameterized system with positive
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parameter µ: 



Ax = b, x ºK 0,

AT y + s = c, s ºK 0,

x ◦ s = µẽ, µ > 0.

(1.2)

If both SOCO and SOCD satisfy IPC, then for each µ > 0, the parameterized system (1.2)
has a unique solution (x(µ), y(µ), s(µ)) (see [22], [33]), which is called a µ-center of SOCO
and SOCD. The set of µ-centers, that is, C = {(x(µ), y(µ), s(µ)) | µ > 0}, is said to be the
central path of SOCO and SOCD. The central path converges to the solution pair of SOCO and
SOCD as µ reduces to zero ([5, 22, 30]).

In general, IPMs for the SOCO consist of two strategies: The first one, which is called the
inner iteration scheme, is to keep the iterative sequence in a certain neighborhood of the central
path or to keep the iterative sequence in a certain neighborhood of the µ-center and the second
one is called the outer iteration scheme, is to decrease the parameter µ to µ+ := (1− θ)µ, for
some θ ∈ (0, 1).

2. PROXIMITY FUNCTIONS AND SEARCH DIRECTIONS

For any xj ∈ Rnj , for each j, we define eigenvalues for xj in the sense of Jordan algebra;

λmax(xj) := x1
j + ‖xj

2:nj
‖, λmin(xj) := xj

1 − ‖xj
2:nj

‖.

The trace of xj is defined by

Tr(xj) := λmax(xj) + λmin(xj)

and the determinant of xj is given by

det(xj) := λmax(xj)λmin(xj).

In fact, λmax(xj) and λmin(xj) are the maximal and minimal eigenvalues of the matrix mat(xj),
respectively, and every xj = (xj

1, xj
2, · · · , xj

nj )T ∈ Rnj can be rewritten by the so-called
spectral decomposition([17]) in the sense of Jordan algebra:

xj = λmax(xj)(
1
2
,

xj
2:nj

2‖xj
2:nj

‖
)T + λmin(xj)(

1
2
, −

xj
2:nj

2‖xj
2:nj

‖
)T .

Here,
xj
2:nj

2‖xj
2:nj

‖ = 0 if xj
2:nj

= 0.

Definition 2.1. [23] Suppose that ψ(t) is a function from R to R and xj ∈ Rnj . Then the
function ψ(xj) : Rnj → Rnj associated with the second-order cone Kj is defined as follows:

ψ(xj) :=
1
2
(ψ(λmax(xj)) + ψ(λmin(xj)), ∆ψ(λmax(xj), λmin(xj))xj

2:nj
)T ,
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where ∆ψ(λmax(xj), λmin(xj)) = ψ(λmax(xj))−ψ(λmin(xj))
λmax(xj)−λmin(xj)

for all λmax(xj) 6= λmin(xj) ∈ R.

In the special case that xj
2:nj

= 0, we denote

ψ(xj) := (ψ(λmax(xj)), 0, · · · , 0)T .

We can also define (xj)p, by the above definition where p is any number in R and xj ∈ Kj .
The following lemma about general functions associated with the second-order cone can be
easily obtained from Definition 2.1.

Lemma 2.2. [23] Suppose that the function ψ : Rnj → Rnj is defined by Definition 2.1. Then
‖ψ(xj)‖ =

√
2

2

√
ψ2(λmax(xj)) + ψ2(λmin(xj)),

Tr (ψ(xj)) = ψ(λmax(xj)) + ψ(λmin(xj)),
det (ψ(xj)) = ψ(λmax(xj))ψ(λmin(xj)) for each j.

To establish the complexity of the algorithm, we need to know bounds for the derivatives
of certain proximity functions in suitable spaces. For SOCO, this requires us to discuss the
derivative of the function ψ(xj(t)) where

xj(t) = (xj
1(t), · · · , xj

nj
(t))T

is a mapping from R into Rnj . Let us denote by (xj(t))′ the derivative of xj(t) with respect to
t:

(xj(t))′ = ((xj
1(t))

′, · · · , (xj
nj

(t))′)T .

Now recalling Definition 2.1, we define

ψ′(xj(t)) := ψ′(λmax(xj(t)))
(1
2
,

xj
2:nj

(t)

2‖xj
2:nj

(t)‖
)T + ψ′(λmin(xj(t)))

(1
2
, −

xj
2:nj

(t)

2‖xj
2:nj

(t)‖
)T

.

Newton’s method is a well-known procedure to solve a system of nonlinear equations. Most
IPMs for solving SOCO employ different search directions together with suitable strategies for
following the central path appropriately. Without loss of generality we assume that (x(µ), y(µ),
s(µ)) is known for some positive µ. For example, due to the above assumption we may assume
this for µ0 = 1 with (x0, s0). We then decrease µ to µ+ := (1− θ)µ for some fixed θ ∈ (0, 1)
and linearize Newton system for (1.2) by replacing x, y, s with x+ := x + ∆x, y+ :=
y + ∆y, s+ := s + ∆s, respectively. Finally, we get the following matrix equation:


A 0 0
0 En AT

mat(s) mat(x) 0







∆x
∆s
∆y


 =




0
0

µ+ẽ−mat(x)s


 , x, s ÂK 0. (2.1)

This system might not be well defined if its Jacobian matrix is singular. To obtain a Newton-
type system that has a unique solution, people usually refer to some scaling schemes. In what
follows we will introduce certain variants of such scaling schemes for SOCO and SOCD, as
first proposed and studied by Tsuchiya ([31, 32]). Now we are ready to give the definition of
a scaling matrix for second-order cones. The scaled vector based on the NT(Nesterov-Todd)
scaling scheme, which was given by Tushiya ([31, 32]), is as follows:



98 BO KYUNG CHOI AND GUE MYUNG LEE

For any x, s ÂK 0 and j = 1, 2, · · · , N,

x̃NT = s̃NT :=




u1W
1
NT x1

...
uNWN

NT xN


 =




u−1
1 (W 1

NT )−1s1

...
u−1

N (WN
NT )−1sN


 ,

where

uj :=
(det(xj)

det(sj)

)−1/4
, W j

NT =

(
wj

1 (wj
2:nj

)T

wj
2:nj

Enj−1 + 1

1+wj
1

wj
2:nj

(wj
2:nj

)T

)

with wj := (wj
1, (w

j
2:nj

)T )T := uj
−1sj+ujQjxj

√
Tr(xj◦sj)+2

√
det(xj)det(sj)

, Qj = diag(1,−1, · · · ,−1) as

in [25].
To describe our new search direction, we need more notations. To distinguish the NT scaling
scheme from many other scaling schemes, we denote by

Ā := 1√
µA(UNT WNT )−1, v := 1√

µUNT WNT x := 1√
µ(UNT WNT )−1s,

dx := 1√
µUNT WNT ∆x, ds := 1√

µ(UNT WNT )−1∆s,

where WNT := diag(W 1
NT , · · · ,WN

NT ), UNT := diag(u1En1 , · · · , uNEnN ), u1, · · · ,
uN > 0. Obviously v ÂK 0. The equations (2.1) imply that the NT search direction for SOCO
is defined as the unique solution of the system:





Ādx = 0,

ĀT ∆y + ds = 0,

dx + ds = v−1 − v.

(2.2)

We can say that dT
x ds = 0, which is coming from the first and second equations of (2.2) or

from the orthogonality of ∆x and ∆s.
For our IPM, we use the following kernel function ([2, 3, 11]):

ψ(t) =
t2 − 1

2
+

e
1
tq
−1 − 1
q

for t > 0, q = 1. (2.3)

Then, we have
ψ′(t) = t− et−q−1

tq+1 , ψ′′(t) = 1 + (q+1)tq+q
t2q+2 et−q−1 > 1,

ψ′′′(t) = − (
q2t−3q−3 + 3q(q + 1)t−2q−3 + (q + 1)(q + 2)t−q−3

)
et−q−1 < 0 (2.4)

and tψ′′(t)− ψ′(t) =
(
(q + 2)t−q−1 + qt−2q−1

)
et−q−1 > 0. (2.5)

Furthermore, the kernel function (2.3) satisfies

lim
t→0+

ψ(t) = lim
t→∞ψ(t) = ∞.
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Note that ψ(1) = ψ′(1) = 0. Then ψ(t) is determined as follows:

ψ(t) =
∫ t

1

∫ ξ

1
ψ′′(ζ)dζdξ.

For v = (v1, · · · , vN ) ∈ Rn, we define:

ψ(v) := ((ψ(v1))T , · · · , (ψ(vN ))T )T , Ψ(vj) := Tr(ψ(vj)) = ψ(λmax(vj))+ψ(λmin(vj)),

and the proximity function(measure) for SOCO and SOCD is

Φ(x, s; µ) := Ψ(v) =
N∑

j=1

Ψ(vj).

Replacing the right hand side of last equation in (2.2) by the kernel function ψ, we have the
following system from (2.2): 




Ādx = 0,

ĀT ∆y + ds = 0,

dx + ds = −ψ′(v).

(2.6)

Let us denote that

σ2 := Tr(ψ′(v) ◦ ψ′(v)) = 2(ψ′(v))T (ψ′(v)) = 2‖ψ′(v)‖2 = 2(‖dx‖2 + ‖ds‖2).

Thus σ =
√

2‖ψ′(v)‖, and hence by Lemma 2.2 or the definition of σ2,

σ2 =
N∑

j=1

(
ψ′(λmax(vj))2 + ψ′(λmin(vj))2

)
.

Since Ψ(v) is strictly convex and minimal at v = ẽ, we have

Ψ(ẽ) = σ(ẽ) = 0.

The following proposition gives a lower bound of σ in terms of Ψ(v).

Proposition 2.3. For any v ∈ K+,

σ =
√

2Ψ(v).

Proof. Since ψ′′(t) > 1,

ψ(t) =
∫ t

1

∫ ξ

1
ψ′′(ζ)dζdξ 5

∫ t

1

∫ ξ

1
ψ′′(ξ)ψ′′(ζ)dζdξ =

1
2
ψ′(t)2, t > 0.

¤

Proposition 2.4. Let % : [0,∞) → [1,∞) be the inverse function of ψ(t) := sψ, for t = 1.
Then

%(sψ) 5 1 +
√

2sψ.
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Proof. Since ψ′′(t) > 1,

ψ(t) =
∫ t

1

∫ ξ

1
ψ′′(ζ)dζdξ =

∫ t

1

∫ ξ

1
dζdξ =

1
2
(t− 1)2.

¤
Our kernel function holds the following lemma which is found in [24].

Lemma 2.5. Let t1 > 0 and t2 > 0. Then

ψ(tr1t
1−r
2 ) 5 rψ(t1) + (1− r)ψ(t2), ∀r ∈ [0, 1].

3. ALGORITHM AND ITS COMPLEXITY ANALYSIS

Now we explain our algorithm for the large-update primal-dual IPM for the SOCO. Assum-
ing that a starting point in a certain neighborhood of the central path is available, we can set out
from this point. Actually, by using the so-called self-dual embedding model, one can further
get the point exactly on the central path corresponding to µ = 1 as an initial point ([19, 25, 33]).
Then, we will go to the outer “while loop”. If µ satisfies Nµ = ε, then it is reduced by the
factor 1 − θ, where θ ∈ (0, 1). Then, we make use of inner “while loop”, and we repeat the
procedure until we find iterates that are “close” to (x(µ), y(µ), s(µ)), that is, the proximity
Φ(x, s;µ) < τ. Here, we apply Newton’s method targeting at the new µ-centers to decide a
search direction (∆x,∆y, ∆s). We return to the outer “while loop”. The whole process is
repeated until µ is small enough, say until Nµ < ε.

The choice of the step size α is another crucial issue in the analysis of the algorithm. It
has to be taken such that the closeness of the iterates to the current µ-center improves by a
sufficient amount. In the algorithm, the inner “while loop” is called the inner iteration and
the outer “while loop” is called the outer iteration. Each outer iteration consists of an update
of parameter µ and a sequence of (one or more) inner iterations. The total number of inner
iterations is the worst-case iteration bound for our algorithm.

The algorithm for our large-update primal-dual IPM for the SOCO is given as follows:

Primal-Dual Algorithm for SOCO
Inputs

A proximity parameter τ > 1;
an accuracy parameter ε > 0;
a variable damping factor α;
a fixed barrier update parameter θ ∈ (0, 1);
(x0, s0) and µ0 = 1 such that Φ(x0, s0; µ0) 5 τ.

begin
x := x0; s := s0; µ := µ0;
while Nµ = ε do
begin

µ := (1− θ)µ;
while Φ(x, s; µ) = τ do
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begin
Solve the system (2.6) for ∆x, ∆y, ∆s;
Determine a step size α;
x := x + α∆x;
y := y + α∆y;
s := s + α∆s;

end
end

end

3.1. Bound of the proximity function after the µ-update. We have Ψ(v) 5 τ before the
update of µ with the factor 1 − θ, at the start of each outer iteration. After updating µ in
an outer iteration, the vector v is divided by the factor

√
1− θ, which in general leads to an

increase of the value of Ψ(v). Then during the inner iteration, the value of Ψ(v) decreases
until it passes the threshold τ. We will show in the following lemma that an upper bound for
Ψ( 1√

1−θ
v) is expressed with Ψ(v).

Lemma 3.1. Let θ be such that 0 < θ < 1. Then, for any v ∈ K+,

Ψ(
1√

1− θ
v) 5

2(q + 1)
(
θ
√

N +
√

Ψ(v)
)2

1− θ
.

Proof. Our proof follows the method of Theorem 3.2 in [4]. For 1√
1−θ

> 1, we consider the
following maximization problem:

maxv{Ψ(
1√

1− θ
v) : Ψ(v) = z},

where z is any nonnegative number. Then there exist u such that
1√

1− θ
ψ′(

1√
1− θ

λmax(vj)) = uψ′(λmax(vj)), j = 1, · · · , N (3.1)

and
1√

1− θ
ψ′(

1√
1− θ

λmin(vj)) = uψ′(λmin(vj)), j = 1, · · · , N. (3.2)

Since 1√
1−θ

ψ′( 1√
1−θ

) = uψ′(1) = 0, we do not have λmax(vj) = 1 and λmin(vj) = 1 for

each j. Let zj
max be such that ψ(λmax(vj)) = zj

max and let zj
min be such that ψ(λmin(vj)) =

zj
min for each j. Then these equations have two solutions for each j, respectively, which are

(λmax(vj))1 < 1 < (λmax(vj))2, (λmin(vj))1 < 1 < (λmin(vj))2 for each j. So, by Lemma
3.1 of [4], we have ψ((λmax(vj))1) 5 ψ((λmax(vj))2) and ψ((λmin(vj))1) 5 ψ((λmin(vj))2)
for each j. For maximizing Ψ( 1√

1−θ
v), we will take (λmax(vj))2 > 1 and (λmin(vj))2 > 1 for

each j. Then (3.1) and (3.2) imply
1√
1−θ

ψ′( 1√
1−θ

λmax(vj)) > 0, ψ′(λmax(vj)) > 0 and u > 0, j = 1, · · · , N and
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1√
1−θ

ψ′( 1√
1−θ

λmax(vj)) > 0, ψ′(λmax(vj)) > 0 and u > 0, j = 1, · · · , N, respectively.
We can define g as follows:

g(vi) :=
ψ′(vi)
ψ′(βvi)

,

where vi, i = 1, · · · , 2N, is an eigenvalue of vj greater than 1. and β = 1√
1−θ

> 1. From

(3.1) and (3.2), g(vi) = β
u for all i. The function g has

g′(vi) =
ψ′′(vi)ψ′(βvi)− βψ′(vi)ψ′′(βvi)

(ψ′(βvi))
2 .

Let f(β) = ψ′′(vi)ψ′(βvi)− βψ′(vi)ψ′′(βvi). By (2.4) and (2.5), we can implies that

f ′(β) > 0. (3.3)

Then, by f(1) = 0,
f(β) > 0 for β > 1. (3.4)

We can say that, by (3.3) and (3.4),
g′(vi) > 0.

Thus g(vi) is strictly monotonically increasing. Hence, there exist unique vi for each i, such
that g(vi) = β

u . It follows that

t := λmax(v1) = λmin(v1) = · · · = λmax(vN ) = λmin(vN ) > 1.

Hence, z = Ψ(v) = 2Nψ(t). This implies

t := %(
z

2N
) = %(

Ψ(v)
2N

).

So,

Ψ(
1√

1− θ
v) 5 2Nψ(

1√
1− θ

%(
Ψ(v)
2N

)),

where Ψ(v)
2N ) > 1, 1√

1−θ
> 1. Since ψ(t) 5 1

2ψ′′(1)(t− 1)2, t = 1 (Lemma 2.6 in [4]),

Ψ(
1√

1− θ
v) 5 2N

1
2
ψ′′(1)

(
1√

1− θ
%
(Ψ(v)

2N

)− 1
)2

.

Since ψ′′(1) = 2q + 2, it follows from Proposition 2.4 that

Ψ(
v√

1− θ
) 5 2N(q + 1)

(
1√

1− θ

(
1 +

√
Ψ(v)
N

)− 1

)2

5
2(q + 1)

(
θ
√

N +
√

Ψ(v)
)2

1− θ
,

where the last inequality follows from 1−√1− θ 5 θ. ¤
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By the assumption Ψ(v) 5 τ just before the update of µ,

Ψ(
v√

1− θ
) 5

2(q + 1)
(
θ
√

N +
√

τ
)2

1− θ
.

We define

L(N, θ, τ) =
2(q + 1)

(
θ
√

N +
√

τ
)2

1− θ
.

Since τ = O(N) and θ = Θ(1),
L = O(N).

3.2. Determining a default step size. In this section, we compute the feasible step size α such
that the proximity function is decreasing and is bound for the decrease during inner iterations;
then give our default step size ᾱ; ᾱ =

(
1 + 3σ(2q + 1)(1 + log 3σ)(q+1)/q

)−1
. We will show

that the step size not only to keeps the iterates feasible but also to gives rise to a sufficiently
large decrease of the barrier function Ψ(v) in each inner iteration. Let us denote the difference
between the proximity before and after one step by a function of the step size, that is,

g(α) := Ψ(v+)−Ψ(v).

The main task in the rest of this section is to study the decreasing behavior of g(α). Since v+

is the scaled vector resulting from the NT scaling, which is the scheme to transform the primal
and dual vectors, x + α∆x and s + α∆s, to the same vector, from Proposition 6.3.3 in [25],
we can get the following: for all j = 1, · · · , N,

det((vj
+)2) = det(vj + αdj

x)det(vj + αdj
s) Tr((vj

+)2) = Tr((vj + αdj
x) ◦ (vj + αdj

s)).
Using the above two equalities and following the proof techniques in Proposition 6.2.9 in [25],
we can prove that there exist γ1, γ2 ∈ (0, 1), γ1 + γ2 = 1 such that

λmin(v
j
+)

= λmin
γ1/2(vj + αdj

x)λmin
γ1/2(vj + αdj

s)λmax
γ2/2(vj + αdj

x)λmax
γ2/2(vj + αdj

s),
λmax(v

j
+)

= λmin
γ2/2(vj + αdj

x)λmin
γ2/2(vj + αdj

s)λmax
γ1/2(vj + αdj

x)λmax
γ1/2(vj + αdj

s).
Thus, since λmin

1/2(vj + αdj
x)λmin

1/2(vj + αdj
s) > 0, λmin(vj + αdj

x) > 0 and λmin(vj +
αdj

s) > 0, from Lemma 2.5, we can induce the following:

Ψ(v+) 5 1
2
(Ψ(v + αdx) + Ψ(v + αds)).

So, we have

g(α) 5 g1(α) :=
1
2
(Ψ(v + αdx) + Ψ(v + αds)) − Ψ(v).

Taking the derivative to α, we get

g1
′(α) =

1
2
Tr(ψ′(v + αdx) ◦ dx + ψ′(v + αds) ◦ ds).

This gives g1
′(0) = −σ2

2 by using the equality dx + ds = −ψ′(v).
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The next result presents an upper bound for the second derivative of g1(α), which is usable
for establishing the polynomial complexity of the algorithm which is different from the result
of Lemma 6.4.3 in [25] for self-regular proximity functions. To facilitate the forthcoming
analysis, we also define

λmin(v) := min{λmin(vj) : j = 1, · · · , N}.
Proposition 3.2. Suppose that the kernel function is defined by (2.3) . Then

g1
′′(α) 5 σ2

2
ψ′′(λmin(v)− ασ). (3.5)

Proof. Following proofs in the Lemma 6.4.3 and Lemma 6.2.10 in [25], we can prove that

g′′1(α) =
d

dα

[
1
2
Tr

(
ψ′(v + αdx) ◦ dx + ψ′(v + αds) ◦ ds

)]
.

Since ψ′(vj + αdj
x) = ψ′(λmax(vj + αdj

x))
(

1
2 ,

(vj+αdj
x)2:nj

2||(vj+αdj
x)2:nj

||

)
+ψ′(λmin(vj + αdj

x))
(

1
2 , − (vj+αdj

x)2:nj

2||(vj+αdj
x)2:nj

||

)
with λmax(vj+αdj

x) = (vj+αdj
x)1+||(vj+αdj

x)2:nj || and λmin(vj+

αdj
x) = (vj +αdj

x)1−||(vj +αdj
x)2:nj ||, we can calculate that, by Cauchy-Schwarz inequality,

d

dα
ψ′(vj + αdj

x)T dj
x

=
1
2
ψ′′(λmax(vj + αdj

x))


(dj

x)1 +

(
(vj + αdj

x)2:nj

T
(dj

x)2:nj

)

||(vj + αdj
x)2:nj ||




2

+
1
2
ψ′′(λmin(vj + αdj

x))


(dj

x)1 −

(
(vj + αdj

x)2:nj

T
(dj

x)2:nj

)

||(vj + αdj
x)2:nj ||




2

+
ψ′(λmax(vj + αdj

x))− ψ′(λmin(vj + αdj
x))

2||(vj + αdj
x)2:nj ||

||(dj
x)2:nj ||2 −

(
(vj + αdj

x)2:nj

T
(dj

x)2:nj

)2

||(vj + αdj
x)2:nj ||2




5 $1||(dj
x)||2,

where $1 := max
j∈J

{ψ′′(λmin(vj+αdj
x)), ψ′′(λmax(vj+αdj

x)), ψ′(λmax(vj+αdj
x))−ψ′(λmin(vj+αdj

x))

2||(vj+αdj
x)2:nj

|| }.

Similarly,
d

dα
ψ′(vj + αdj

s)
T dj

s 5 $2||(dj
s)||2,
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where $2 := max
j∈J

{ψ′′(λmin(vj+αdj
s)), ψ′′(λmax(vj+αdj

s)),
ψ′(λmax(vj+αdj

s))−ψ′(λmin(vj+αdj
s))

2||(vj+αdj
s)2:nj

|| }.

These imply that

g′′1(α) 5
N∑

j=1

($1‖dj
x‖2 + $2‖dj

s‖2).

By the Mean value Theorem, there are ζj
x ∈ [λmax(vj + αdj

x), λmin(vj + αdj
x)] and

ζj
s ∈ [λmax(vj + αdj

s), λmin(vj + αdj
s)] satisfing ψ′′(ζj

x) = ψ′(λmax(vj+αdj
x))−ψ′(λmin(vj+αdj

x))

2||(vj+αdj
x)2:nj

||

and ψ′′(ζj
s ) = ψ′(λmax(vj+αdj

s))−ψ′(λmin(vj+αdj
s))

2||(vj+αdj
s)2:nj

|| , respectively. Since ψ′′(·) is decreasing, we

find a lower bound for λmin(vj + αdj
x) and λmin(vj + αdj

s) so that we can get a upper bound
for

∑N
j=1($1‖dj

x‖2 + $2‖dj
s‖2). For any fixed j,

λmin(vj + αdj
x) = λmin(v)− ασ and λmin(vj + αdj

s) = λmin(v)− ασ.

We can claim that the right-hand side of above two inequalities make a maximum value of
ψ′′(·). Therefore,

g′′1(α) 5
N∑

j=1

ψ′′(λmin(v)− ασ)(‖dj
x‖2 + ‖dj

s‖2) =
σ2

2
ψ′′(λmin(v)− ασ).

¤
Since g1(0) = 0 and g′1(0) = −σ2

2 , by (3.5),

g(α) 5 g1(α) := g1(0) + g1
′(0)α +

∫ α

0

∫ ξ

0
g′′1(ζ)dζdξ

5 g2(α) := g1(0) + g1
′(0)α +

∫ α

0

∫ ξ

0

σ2

2
ψ′′(λmin(v)− ζσ)dζdξ.

Note that g2(0) = 0. Furthermore, since g′2(0) = g′1(0) = −σ2

2 , g′2(α) = −σ2

2 +σ
2

(
ψ′(λmin(v))

−ψ′(λmin(v)−ασ)
)

and g′′2(α) = σ2

2 ψ′′(λmin(v)−ασ) which is increasing on α ∈ [0, λmin(v)
σ ).

Using g′′1(α) 5 g′′2(α), we can easily check that

g′1(α) = g′1(0) +
∫ α

0
g′′1(ξ)dξ 5 g′2(α).

This relation gives that
g′1(α) 5 0, if g′2(α) 5 0.

To compute the feasible step size α such that the proximity measure is decreasing when we take
a new iterate for fixed µ, we want to calculate the step size α which satisfies that g′2(α) 5 0
holds with α as large as possible. Since g′′2(α) > 0, that is, g′2(α) is monotonically increasing
at α, the largest possible value at α satisfying g′2(α) 5 0 occurs when g′2(α) = 0, that is,

−ψ′(λmin(v)− ασ) + ψ′(λmin(v)) = σ. (3.6)
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Since ψ′′(t) is monotonically decreasing, the derivative of the left hand-side in (3.6) with re-
spect to λmin(v) is

−ψ′′(λmin(v)− ασ) + ψ′′(λmin(v)) < 0.

So, the left-hand side in (3.6) is decreasing at λmin(v). This implies that if λmin(v) gets smaller,
then α gets smaller with fixed σ. Note that

σ =

√√√√
N∑

j=1

(
(ψ′(λmax(vj)))2 + (ψ′(λmin(vj)))2

)
= |ψ′(λmin(v))| = −ψ′(λmin(v)).

Hence, the worse situation for the largest step size occurs when λmin(v∗) satisfies

−ψ′(λmin(v∗)) = σ. (3.7)

So, we can find out v∗ such that v∗ = ((v∗)1, (v∗)2, · · · , (v∗)N )T = ((ẽ1)T , (ẽ2)T , · · · ,

1 · (1
2 ,

(v∗)j
2:nj

2‖(v∗)j
2:nj

‖)
T + λmin(v∗)(1

2 , − (v∗)j
2:nj

2‖(v∗)j
2:nj

‖)
T , · · · , (ẽN )T )T , 0 < λmin(v∗) 5 1.

In that case, the largest α (i.e., α∗) satisfying (3.6) is minimal. For our purpose, we need to
deal with the worse case and so we assume that (3.7) holds.

Let ρ : [0,∞) → (0, 1] denote the inverse function of the restriction of−ψ′(t) in the interval
(0, 1]. Then (3.7) implies

λmin(v∗) = ρ(σ). (3.8)

By using (3.6) and (3.7), we immediately obtain

−ψ′(λmin(v∗)− ασ) = 2σ.

By the definition of ρ and (3.8), the largest step size α of the worse case is given as follows:

α∗ =
ρ(σ)− ρ(2σ)

σ
. (3.9)

For the purpose of finding an upper bound of g(α), we need a default step size ᾱ that is the
lower bound of the α∗ and consists of σ.

Lemma 3.3. Let ρ : [0,∞) → (0, 1] be the inverse function of the restriction of −ψ′(t) in the
interval (0, 1] and α∗ be as defined in (3.9). Then

α∗ = 1

1 + 3σ(2q + 1)(1 + log 3σ)
q+1

q

.

Proof. Since −ψ′(ρ(σ)) = σ, taking the derivative of σ at both sides, we get

ρ′(σ) = − 1
ψ′′(ρ(σ))

.

Moreover, we have,

α∗ =
1
σ

∫ σ

2σ
ρ′(ξ)dξ = 1

σ

[ ξ

ψ′′(ρ(2σ))
]2σ

σ
=

1
ψ′′(ρ(2σ))

,
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where the inequality follows from σ 5 ξ 5 2σ and ρ and ψ′′ are monotonically decreas-
ing.From ψ′(t) = t − et−q−1 · t−q−1, let −ψ′b(t) = et−q−1 · t−q−1and let ρ : [1,∞) → (0, 1]
denote the inverse function of the restriction of −ψ′b(t) to the interval (0, 1].
Let ρ(2σ) = t̃. Then 0 < t̃ 5 1 and 2σ = −ψ′(t̃) = −t̃−ψ′b(t̃). So,−ψ′b(t̃) = t̃+2σ 5 1+2σ.
Since ρ is decreasing, ρ(−ψ′b(t̃)) = ρ(1 + 2σ) and hence we have,

ρ(2σ) = ρ(1 + 2σ). (3.10)

Let ρ(1+2σ) = t̂. Then 1+2σ = −ψ′b(t̂) = e(ρ(1+2σ))−q−1·(ρ(1+2σ))−q−1, e(ρ(1+2σ))−q−1 =
(1 + 2σ)(ρ(1 + 2σ))q+1 5 1 + 2σ 5 3σ. So, (ρ(1 + 2σ))−q − 1 5 log 3σ and hence we have

ρ(1 + 2σ) = (1 + log 3σ)−
1
q . (3.11)

From (3.10), we have

α̃ :=
1

ψ′′(ρ(2σ))
= 1

ψ′′(t̂)
.

From (3.11), we have

ψ′′(t̂) = 1 + ((q + 1)t̂q + q)et̂−q−1 · t̂−q−1 · t̂−q−1

= 1 + ((q + 1)t̂q + q)(ψ′b(t̂))t̂
−q−1

= 1 + ((q + 1)t̂q + q)(1 + 2σ)t̂−q−1

5 1 + ((q + 1) · 1 + q)(1 + 2σ)(ρ(1 + 2σ))−q−1

5 1 + 3σ(2q + 1)(1 + log 3σ)
q+1

q .

Therefore,

α∗ = 1
ψ′′(t̂)

= 1

1 + 3σ(2q + 1)(1 + log 3σ)
q+1

q

.

¤

Define

ᾱ =
1

1 + 3σ(2q + 1)(1 + log 3σ)
q+1

q

. (3.12)

We will use ᾱ as the default step size in the algorithm.

3.3. Decrease of the proximity function during an inner iteration. Now we show that our
proximity function Ψ with our default step size ᾱ decreasing. It can be easily established by
using the following result:

Lemma 3.4. [24] Let h(t) be a twice differentiable convex function with h(0) = 0, h′(0) < 0
and let h(t) attain its (global) minimum at t∗ > 0. If h′′(t) is increasing for t ∈ [0, t∗], then

h(t) 5 th′(0)
2

, 0 5 t 5 t∗.
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Since g2(α) satisfies the conditions of the above Lemma,

g(α) 5 g1(α) 5 g2(α) 5 g′2(0)
2

α for all 0 5 α 5 α∗.

Since g′2(0) = −σ2

2 , we can obtain the upper bound for the decreasing value of the proximity
in the inner iteration by the lemma;

Theorem 3.5. Let ᾱ be a step size as defined in (3.12) and σ = 1. Then we have

g(ᾱ) 5 − Ψ
1
2

2 + 6
√

2(2q + 1)
(
1 + log 3

√
2
√

Ψ0

) q+1
q

. (3.13)

Proof. Since g′1(0) = g′2(0) = −σ2

2 and ᾱ ∈ [0, α∗], we have

g(ᾱ) 5 −σ2

4
ᾱ 5 −1

4
· σ2

1 + 3σ(2q + 1)(1 + log 3σ)
q+1

q

.

This expresses the decease in one inner iteration in terms of σ. Since the decrease depends
monotonically on σ, we can express the decrease in terms of Ψ = Ψ(v) by Proposition 2.3 as
follows:

g(ᾱ) 5 −1
4
·

Ψ
2

1 + 3
√

2Ψ(2q + 1)
(
1 + log 3

√
2Ψ

) q+1
q

5 −1
2
· Ψ

1
2

1 + 3
√

2(2q + 1)
(
1 + log 3

√
2
√

Ψ0

) q+1
q

,

where the second inequality follows from Ψ0 = Ψ = τ = 1. This result holds the theorem. ¤

3.4. Iteration bound. We need to count how many inner iterations are required to return to
the situation where Ψ(v) 5 τ after a µ-update. We denote the value of Ψ(v) after µ-update
as Ψ0; the subsequent values in the same outer iteration are denoted as Ψk, k = 1, · · · . If K
denotes the total number of inner iterations in the outer iteration, we then have

Ψ0 5 L = O(N), ΨK−1 > τ, 0 5 ΨK 5 τ

and according to (3.13),

Ψk+1 5 Ψk − 1

2 + 6
√

2(2q + 1)
(
1 + log 3

√
2
√

Ψ0

) q+1
q

Ψ
1
2
k .

At this stage we invoke the following lemma from Lemma 14 in [24] without proof.

Lemma 3.6. [24] Let t0, t1, · · · , tK be a sequence of positive numbers such that

tk+1 5 tk − βt1−γ
k , k = 0, 1, · · · ,K − 1,
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where β > 0 and 0 < γ 5 1. Then

K 5 tγ0
βγ

.

Letting tk = Ψk, β = 1

2+6
√

2(2q+1)(1+log 3
√

2
√

Ψ0)
q+1

q
and γ = 1

2 , we can get the following

lemma from Lemma 3.6.

Lemma 3.7. Let K be the total number of inner iterations in the outer iteration. Then we have

K 5 2
(

2 + 6
√

2(2q + 1)
(
1 + log 3

√
2
√

Ψ0

) q+1
q

)
Ψ1/2

0 ,

where Ψ0 is the value of Ψ(v) after the µ−update in outer iteration.

Now we estimate the total number of iterations of our algorithm.

Theorem 3.8. If τ = 1, the total number of iterations is not more than

⌈
2

(
2 + 6

√
2(2q + 1)

(
1 + log 3

√
2
√

Ψ0

) q+1
q

)
Ψ1/2

0

⌉⌈1
θ

log
N

ε

⌉
.

Proof. In the algorithm, Nµ = ε, µk := (1− θ)kµ0 and µ0 = 1. By simple computation, we
have,

k 5 1
θ

log
N

ε
.

Therefore, the number of outer iterations is bounded above by

1
θ

log
N

ε
.

Multiplication of this result by the number in the above lemma holds the theorem. ¤

Since Ψ1/2
0 = O(

√
N), the upper bound for the total number of inner iterations in the outer

iteration is

O(q
√

N(log N)
q+1

q ).

Also, we take for θ a constant (not depending on N ), namely 1
θ = Θ(1). With τ = O(N), the

new complexity of the primal-dual interior-point method for second-order cone optimization
problem based on a new proximity function is given by

O
(
q
√

N(log N)
q+1

q log
N

ε

)
.
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