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ABSTRACT. In this paper we extend primal-dual interior point algorithm for linear optimiza-
tion (LO) problems to P∗(κ) linear complementarity problems(LCPs) ([1]). We define proxim-
ity functions and search directions based on kernel functions, ψ(t) = tp+1−1

p+1
−log t, p ∈ [0, 1],

which is a generalized form of the one in [16]. It is the first to use this class of kernel functions
in the complexity analysis of interior point method(IPM) for P∗(κ) LCPs. We show that if
a strictly feasible starting point is available, then new large-update primal-dual interior point
algorithms for P∗(κ) LCPs have O((1 + 2κ)n log n

ε
) complexity which is similar to the one

in [16]. For small-update methods, we have O((1 + 2κ)
√

n log n
ε
) which is the best known

complexity so far.

1. INTRODUCTION

In this paper we consider the following linear complementarity problem (LCP) as follows :

s = Mx + q, xs = 0, x ≥ 0, s ≥ 0, (1)

where M ∈ Rn×n is a P∗(κ) matrix and q ∈ Rn.
LCPs have many applications in mathematical programming and equilibrium problems. In-

deed, it is known that by exploiting the first-order optimality conditions of the optimization
problem, any differentiable convex quadratic program can be formulated into a monotone lin-
ear complementarity problem, i.e. P∗(0) LCP, and vice versa([17]). And variational inequality
problems are widely used in the study of equilibrium in economics, transportation planning
and game theory. And variational inequality problems have a close connection to the LCPs.
The reader can refer to [4] for the basic theory, algorithms and applications.
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The primal-dual IPM for LO problem was first introduced in [7, 11]. Kojima et al.([7])
proved the polynomial computational complexity of the algorithm for LO problem, and since
then many other algorithms have been developed based on the primal-dual strategy. Kojima et
al.([9]) proposed a polynomial time algorithm for monotone linear complementarity problems,
i.e. P∗(0) LCPs. Kojima et al.([8]) proved the existence of the central path for any P∗(κ)
LCP and generalized previously known results to the wider class of so called P∗(κ) LCPs and
unified interior point methods(IPMs) for LCPs. Since then an interior point algorithm’s quality
is measured by the fact whether it can be generalized to P∗(κ) LCPs or not([6]). Miao ([12])
extended the Mizuno-Todd-Ye predictor-corrector method to P∗(κ) LCPs and his algorithm
has O((1 + κ)

√
nL) iteration complexity. Recently, Illés and Nagy([6]) gives a version of

Mizuno-Todd-Ye predictor-corrector interior point algorithm for the P∗(κ) LCP and show the
iteration complexity O((1 + κ)

3
2
√

nL).
In this paper we propose new large-update primal-dual interior point algorithms for P∗(κ)

LCP and show that the algorithm has O((1+2κ)n log n
ε ) iteration complexity which is similar

to the one in [16]. For p = 1, the kernel function is a classical logarithmic barrier function
which is studied in [16] for LO. Since P∗(κ) LCP is a generalization of LO problem, we loose
the orthogonality of the vectors dx and ds. So our analysis is different from the one in [13] and
[15]. We define a neighborhood and use a search direction based on a specific class of kernel
functions which are eligible. However we don’t use the condition (iii) of eligible function (See
Definition 2.4). Thus the analysis is different from others in [6], [8], [9], [10], and [12].

This paper is organized as follows. In Section 2 we recall some basic concepts and properties
of the kernel functions. In Section 3 we show the complexity result.

We use the following notations throughout the paper : Rn
+ denotes the set of n dimen-

sional nonnegative vectors and Rn
++, the set of n dimensional positive vectors. For x =

(x1, x2, · · · , xn)T ∈ Rn, xmin = min{x1, x2, · · · , xn}, i.e. the minimal component of x, ‖x‖
is the 2-norm of x, and X is the diagonal matrix from vector x , i.e. X = diag(x). xs denotes
the componentwise product (Hadamard product) of vectors x and s. xT s is the scalar product
of the vectors x and s. e is the n-dimensional vector of ones and I is the n-dimensional identity
matrix. J is the index set, i.e. J = {1, 2, · · · , n}. We write f(x) = O(g(x)) if | f(x) |≤ k |
g(x) | for some positive constant k and f(x) = Θ(g(x)) if k1 | g(x) |≤| f(x) |≤ k2 | g(x) |
for some positive constants k1 and k2.

2. PRELIMINARIES

In this section we give some basic definitions and properties.

Definition 2.1. Let κ ≥ 0. A matrix M ∈ Rn×n is called a P∗(κ) matrix if

(1 + 4κ)
∑

i∈J+(x)

xi(Mx)i +
∑

i∈J−(x)

xi(Mx)i ≥ 0 ,

for all x ∈ Rn, where J+(x) = {i ∈ J : xi(Mx)i ≥ 0} and J−(x) = {i ∈ J : xi(Mx)i <
0}.
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Remark 2.2. The class P∗(κ) contains the class PSD of positive semi-definite matrices, i.e.
matrices M satisfying xT Mx ≥ 0 for all x ∈ Rn, and the class P of matrices with all the
principal minors positive.

Definition 2.3. A function ψ : R+ → R+ is called a kernel function if ψ is twice differentiable
and satisfies the following conditions:
(i) ψ

′
(1) = ψ(1) = 0,

(ii) ψ
′′
(t) > 0, for all t > 0,

(iii) limt→0+ ψ(t) = limt→∞ ψ(t) = ∞.

Definition 2.4. A function ψ(∈ C3) : (0,∞) → R is eligible if it satisfies the following
conditions:
(i) tψ

′′
(t) + ψ

′
(t) > 0, t > 0.

(ii) ψ
′′′

(t) < 0, t > 0,

(iii) 2ψ
′′
(t)2 − ψ

′
(t)ψ

′′′
(t) > 0, 0 < t ≤ 1.

(iv) ψ
′′
(t)ψ

′
(βt)− βψ

′
(t)ψ

′′
(βt) > 0, t > 1, β > 1.

Definition 2.5. A function f : D(⊂ R) → R is exponentially convex if and only if f(
√

x1x2) ≤
1
2(f(x1) + f(x2)) for all x1, x2 ∈ D.

We use the following lemma to prove that the modified Newton-system has a unique solution.

Lemma 2.6. (Lemma 4.1 in [8]) Let M ∈ Rn×n be a P∗(κ) matrix and x, s ∈ Rn
++. Then

for all a ∈ Rn the system {
−M∆x + ∆s = 0,

S∆x + X∆s = a

has a unique solution (∆x,∆s).

We denote the strictly feasible set of LCP (1) by Fo, i.e.,

Fo := {(x, s) ∈ R2n
++ : s = Mx + q)}.

Definition 2.7. A (x, s) ∈ Fo is an ε-approximate solution if and only if xT s ≤ ε for ε > 0.

To find an ε-approximate solution for (1) we relax the complementarity condition, i.e. the
second equation in (1) and introduce the following parameterized system :

s = Mx + q, xs = µe, x > 0, s > 0, (2)

where µ > 0. Without loss of generality, we assume that (1) is strictly feasible, i.e. there
exists (x0, s0) such that s0 = Mx0 + q, x0 > 0, s0 > 0 ([8]). For given strictly feasible
point (x0, s0) we can always find µ0 > 0 such that Ψ(x0, s0, µ0) ≤ τ. Since M is a P∗(κ)
matrix and (1) is strictly feasible, (2) has a unique solution for any µ > 0. We denote the
solution of (2) as (x(µ), s(µ)) for given µ > 0 and call it µ−center. We define the solution set
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{(x(µ), s(µ)) | µ > 0} as the central path of system (2). As µ → 0, the sequence (x(µ), s(µ))
approaches to the solution (x, s) of the system (1) ([8]). By defining the following notations:

d =
√

x

s
, v =

√
xs

µ
, dx =

v∆x

x
, ds =

v∆s

s
, (3)

we can write the scaled Newton-system as follows :
{
−M̄dx + ds = 0,

dx + ds = v−1 − v,
(4)

where M̄ = DMD and D = diag(d). Note that v−1− v in (4) is exactly the negative gradient
of the logarithmic barrier function Ψl(v) =

∑n
i=1((v

2
i − 1)/2− log vi), i.e.

dx + ds = −∇Ψl(v). (5)

In this paper we replace logarithmic barrier function with the generalized log-barrier function,

Ψ(v) =
n∑

i=1

ψ(vi), ψ(t) =
tp+1 − 1
p + 1

− log t, p ∈ [0, 1]. (6)

ψ is called the kernel function of Ψ(v) and corresponding Newton system is given as follows:
{
−M∆x + ∆s = 0,

S∆x + X∆s = µe− µvp+1.
(7)

This system uniquely defines a search direction (∆x,∆s) by Lemma 2.6, since M is a P∗(κ)
matrix and (1) is strictly feasible. Throughout the paper, we assume that a proximity param-
eter τ and a barrier update parameter θ are given and τ = O(n) and 0 < θ < 1, fixed. The
algorithm works as follows. We assume that strictly feasible point (x, s) with ψ(x, s, τ) ≤ τ is
given. Then after decreasing µ to µ+ = (1− θ)µ, for some fixed θ ∈ (0, 1), we solve Newton
system (7) to obtain the unique search direction. The positivity condition of a new iterate is
ensured with the right choice of the step size α which is defined by some line search rule. This
procedure is repeated until we find a new iterate (x+, s+) which is in a τ−neighborhood of the
µ+−center and let µ := µ+, (x, s) := (x+, s+). Then µ is again reduced by the factor 1 − θ
and we solve Newton system (7) targeting at the new µ+-center, and so on. This process is re-
peated until µ is small enough, e.g. nµ ≤ ε. One distinguishes IPMs as large-update methods
when θ = Θ(1) and small-update methods when θ = Θ( 1√

n
). The small-update methods have

the best known iteration complexity, but in practice large-update methods are more efficient
than small-update. In this paper we define a large-update IPM and the algorithm is defined as
follows :

Algorithm
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Input:
A threshold parameter τ > 1;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
starting point (x0, s0) and µ0 > 0 such that Ψ(x0, s0, µ0) ≤ τ ;
begin
x := x0; s := s0; µ := µ0;
while nµ ≥ ε do
begin
µ := (1− θ)µ;
while Ψ(v) > τ do
begin
solve (7) for ∆x and ∆s;
determine a step size α from (18);
x := x + α∆x;
s := s + α∆s;
end
end
end

For ψ we have

ψ
′
(t) = tp − 1

t
, ψ

′′
(t) = ptp−1 +

1
t2

, ψ
′′′

(t) = p(p− 1)tp−2 − 2
t3

. (8)

Since ψ
′′
(t) > 0, ψ is strictly convex. Note that for p ∈ [0, 1], ψ(1) = ψ

′
(1) = 0. From this

fact ψ is determined by the second derivative, i.e., ψ(t) =
∫ t
1

∫ ξ
1 ψ

′′
(ς)dςdξ. We also define the

norm-based proximity measure δ(v) as follows :

δ(v) =
1
2
‖ ∇Ψ(v) ‖= 1

2
‖ dx + ds ‖ . (9)

Note that since Ψ(v) is strictly convex and minimal at v = e, we have Ψ(v) = 0 which is
equivalent to δ(v) = 0 and to v = e. For the notational convenience we denote δ(v) by δ.

Lemma 2.8. Let δ be the value defined in (9). Then we have

vmin ≥ 1
1 + 2δ

.

Proof: First, if vmin ≤ 1, then we have

δ =
1
2
‖ − ∇Ψ(v)‖ =

1
2
‖v−1 − vp‖ ≥ 1

2
| v−1

min − vp
min |≥

1
2
(v−1

min − 1).

Thus we have vmin ≥ (1 + 2δ)−1. Secondly, if vmin > 1, then we have vmin > 1 ≥ 1
1+2δ . 2
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In the following lemma we give key properties which are crucial in the analysis of the algo-
rithm.

Lemma 2.9. Kernel function ψ in (6) satisfies the following properties.

(i) tψ
′′
(t) + ψ

′
(t) > 0, t > 0.

(ii) ψ
′′′

(t) < 0, t > 0,

(iii) ψ
′′
(t)ψ

′
(βt)− βψ

′
(t)ψ

′′
(βt) > 0, t > 1, β > 1.

Proof: (i): From (8), tψ
′′
(t)+ψ

′
(t) = t(ptp−1 + 1

t2
)+(tp− 1

t ) = (p+1)tp > 0, for t > 0.
(ii): By (8), it is obvious.
(iii): By (8), ψ

′′
(t)ψ

′
(βt) − βψ

′
(t)ψ

′′
(βt) = tp(1+p)(βp+1−1)

βt2
> 0, for p ∈ [0, 1], t > 1,

β > 1. 2

By Lemma 2.9 (i) and Lemma 1 in [14], ψ is exponentially convex. Let % : [0,∞) → [1,∞)
be the inverse function of ψ for t ≥ 1, ρ : [0,∞) → (0, 1] the inverse function of −1

2ψ
′
(t) for

t ∈ (0, 1]. Then we have the following lemma.

Lemma 2.10. (Example 9 in [5])

(i) (1 + (p + 1)s)
1

p+1 ≤ %(s) ≤ 1 + s +
√

s2 + 2s, s ≥ 0.
(ii) ρ(s) ≥ 1

(2s+1) , s > 0. 2

Now we obtain a lower bound for δ in terms of the proximity function Ψ(v).

Theorem 2.11. Let δ be the norm-based proximity measure as defined in (9). If Ψ(v) ≥ τ for
τ ≥ 1, then we have

δ ≥ 1
6
(Ψ(v))

p
p+1 .

Proof: By Theorem 4.9 in [1], Lemma 2.10 (i) and Ψ(v) ≥ 1, we get

δ ≥ 1
2

(
%(Ψ(v))p − 1

%(Ψ(v))

)
≥ 1

2

(
((p + 1)Ψ(v) + 1)

p
p+1 − 1

((p + 1)Ψ(v) + 1)
1

p+1

)

=
1
2

(p + 1)Ψ(v)

((p + 1)Ψ(v) + 1)
1

p+1

≥ (p + 1)Ψ(v)

2(1 + 2Ψ(v))
1

p+1

≥ (p + 1)Ψ(v)

6Ψ(v)
1

p+1

≥ 1
6
Ψ(v)

p
p+1 ,

where p ∈ [0, 1]. 2

Note that at the start of outer iteration of the algorithm, just before the update of µ with the
factor 1 − θ, we have Ψ(v) ≤ τ. Due to the update of µ the vector v is divided by the factor√

1− θ, with 0 < θ < 1, which in general leads to an increase in the value of Ψ(v). By using
the following lemma, we obtain an estimate for the effect of a µ-update on the value of Ψ(v).

Lemma 2.12. If t > 1, then ψ(t) < 1
2ψ

′′
(1)(t− 1)2.
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Proof: By using Taylor’s Theorem and ψ(1) = ψ
′
(1) = 0,

ψ(t) = ψ(1) + ψ
′
(1)(t− 1) +

1
2
ψ
′′
(t− 1)2 +

1
3
ψ
′′′

(ξ)(ξ − 1)3

=
1
2
ψ
′′
(t− 1)2 +

1
3
ψ
′′′

(ξ)(ξ − 1)3,

where 1 ≤ ξ ≤ t if t > 1. Since ψ
′′′

< 0, we obtain the desired result. 2

Lemma 2.13. If Ψ(v) ≤ τ , then we have for 0 < θ < 1

Ψ(
v√

1− θ
) ≤ (1 + p)n

2(1− θ)

(
θ +

τ

n
+

√( τ

n

)2
+

2τ

n

)2

.

Proof: By the definition of % and 1√
1−θ

≥ 1, 1√
1−θ

%
(

Ψ(v)
n

)
≥ 1. By Theorem 3.2 in [1],

Lemma 2.12 (i) with ψ
′′
(1) = 1 + p, and Lemma 2.10, we have

Ψ(
v√

1− θ
) ≤ nψ


%

(
Ψ(v)

n

)
√

1− θ


 ≤ (1 + p)n

2


%

(
Ψ(v)

n

)
√

1− θ
− 1




2

≤ (1 + p)n
2


1 + τ

n +
√(

τ
n

)2 + 2τ
n −√1− θ

√
1− θ




2

≤ (1 + p)n
2(1− θ)

(
θ +

τ

n
+

√( τ

n

)2
+

2τ

n

)2

.

By using 1− θ = θ
1+
√

1−θ
≤ θ, the last inequality holds. 2

Define Ψ0 as the value of Ψ(v) after the µ-update. Then we have

Ψ0 ≤ (1 + p)n
2(1− θ)

(
θ +

τ

n
+

√( τ

n

)2
+

2τ

n

)2

. (10)

For large-update methods with τ = O(n) and θ = O(1), we have Ψ0 = O(n).

3. COMPLEXITY ANALYSIS

In this section we analyze the complexity of the algorithm. Since P∗(κ) LCPs are gener-
alization of LO problems, we loose the orthogonality of vectors dx and ds. So the anal-
ysis is different from LO case([1], [5], [7], [13], [16]). After a damped step for fixed µ
we have x+ = x + α∆x, s+ = s + α∆s. From (3), we have x+ = x

(
e + α∆x

x

)
=

x
(
e + αdx

v

)
= x

v (v + αdx), s+ = s
(
e + α∆s

s

)
= s

(
e + αds

v

)
= s

v (v + αds). Thus we
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have v2
+ = x+s+

µ = (v + αdx)(v + αds). Since M is a P∗(κ) matrix and M∆x = ∆s from
(7), for ∆x ∈ Rn we have

(1 + 4κ)
∑

i∈J+

∆xi∆si +
∑

i∈J−

∆xi∆si ≥ 0,

where J+ = { i ∈ J : ∆xi∆si ≥ 0 }, J− = J − J+ and ∆xi, ∆si denote the i−th
component of the vector ∆x and ∆s, respectively. Since dxds = v2∆x∆s

xs = ∆x∆s
µ and µ > 0,

(1 + 4κ)
∑

i∈J+

[dx]i[ds]i +
∑

i∈J−

[dx]i[ds]i ≥ 0, (11)

where [dx]i and [ds]i denote the i−th component of the vector dx and ds, respectively. In the
following lemma we obtain the bound for ‖dx‖ and ‖ds‖.

Lemma 3.1. (Lemma 4.2 in [3])
∑n

i=1([dx]2i + [ds]2i ) ≤ 4(1 + 2κ)δ2, ‖dx‖ ≤ 2
√

1 + 2κ δ

and ‖ds‖ ≤ 2
√

1 + 2κ δ.

Lemma 3.2. Let δ be the value defined in (9). Then we have

‖(x−1∆x, s−1∆s)‖ ≤ 2
√

1 + 2κ δ(1 + 2δ). (12)

Proof: By using Lemma 3.1 and Lemma 2.8, we have

‖(x−1∆x, s−1∆s)‖ = ‖(v−1dx, v−1ds)‖ ≤ 1
vmin

√
‖dx‖2 + ‖ds‖2

≤ 1
vmin

2
√

1 + 2κδ = 2
√

1 + 2κ δ(1 + 2δ).

2

Define

α̂ =
1

2
√

1 + 2κ δ(1 + 2δ)
. (13)

Then for α ∈ [0, α̂], we get x(α) = x+α∆x > 0 and s(α) > 0. Indeed, if ∆x > 0, it is clear.
Otherwise, there exists an index set J̄ such that J̄ = {i ∈ J : ∆xi < 0}. From (14),

max
i∈J̄

(−x−1∆x)i ≤ ‖ − x−1∆x‖ ≤ 2
√

1 + 2κ δ(1 + 2δ) = α̂−1.

Thus mini∈J̄(−x(∆x)−1)i ≥ α̂ ≥ α and xi + α∆xi > 0 for i ∈ J̄ and α ∈ [0, α̂]. Hence
x + α∆x > 0 for α ∈ [0, α̂]. By the same way, we can get the case s(α) = s + α∆s(α) > 0
for α ∈ [0, α̂]. Since ψ(v) is exponentially convex, we have

Ψ(v+) = Ψ(
√

(v + αdx)(v + αds) ) ≤ 1
2

(Ψ(v + αdx) + Ψ(v + αds) ).

For given µ > 0 by letting f(α) the difference of the new and old proximity measures, i.e.

f(α) = Ψ(v+)−Ψ(v),
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we have f(α) ≤ f1(α), where f1(α) := 1
2(Ψ(v + αdx) + Ψ(v + αds)) − Ψ(v). Note that

f(0) = f1(0) = 0. By taking the derivative of f1(α) with respect to α, we have

f
′
1(α) =

1
2

n∑

i=1

(ψ
′
(vi + α[dx]i)[dx]i + ψ

′
(vi + α[ds]i)[ds]i).

Using (5) and the definition of δ, we have

f
′
1(0) =

1
2
∇Ψ(v)T (dx + ds) = −1

2
∇Ψ(v)T∇Ψ(v) = −2δ2. (14)

By taking the derivative of f
′
1(α) with respect to α, we have

f
′′
1 (α) =

1
2

n∑

i=1

(ψ
′′
(vi + α[dx]i)[dx]2i + ψ

′′
(vi + α[ds]i)[ds]2i ). (15)

In the followings we cite some technical lemmas without proof. We obtain the feasible step
size α such that the proximity measure is decreasing when we take a new iterate for fixed µ in
Lemma 3.5.

Lemma 3.3. (Lemma 4.3 in [3]) f
′′
1 (α) ≤ 2(1 + 2κ) δ2ψ

′′
(vmin − 2α

√
1 + 2κ δ).

Lemma 3.4. (Lemma 4.4 in [3]) f
′
1(α) ≤ 0 if α is satisfying

−ψ′(vmin − 2αδ
√

1 + 2κ) + ψ
′
(vmin) ≤ 2δ√

1 + 2κ
. (16)

Lemma 3.5. (Lemma 4.5 in [3]) Let ρ : [0,∞) → (0, 1] denote the inverse function of the
restriction of −1

2ψ
′
(t) to the interval (0, 1]. Then the largest step size α that satisfies (16) is

given by

ᾱ :=
1

2δ
√

1 + 2κ

(
ρ(δ)− ρ

((
1 +

1√
1 + 2κ

)
δ

))
. (17)

In the following lemma we obtain the lower bound for ᾱ in Lemma 3.5.

Lemma 3.6. Let ρ and ᾱ be the values as defined in Lemma 3.5. Then we have

ᾱ ≥ 1
256(1 + 2κ)δ2

.

Proof: By the definition of ρ, −ψ
′
(ρ(δ)) = 2δ. By taking the derivative with respect to δ,

we get −ψ
′′
(ρ(δ))ρ

′
(δ) = 2. Since ψ

′′
> 0, we have ρ

′
(δ) = − 2

ψ′′(ρ(δ))
< 0. Hence ρ is

monotonically decreasing. By (17) and the fundamental theorem of calculus, we have

ᾱ =
1

2δ
√

1 + 2κ
(ρ(δ)− ρ((1 +

1√
1 + 2κ

)δ))

=
1

2δ
√

1 + 2κ

∫ δ

(1+ 1√
1+2κ

)δ
ρ
′
(ξ)dξ =

1
δ
√

1 + 2κ

∫ (1+ 1√
1+2κ

)δ

δ

dξ

ψ′′(ρ(ξ))
.
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Since δ ≤ ξ ≤ (1 + 1√
1+2κ

)δ and ρ is monotonically decreasing, ρ(ξ) ≥ ρ((1 + 1√
1+2κ

)δ).

Since ψ
′′

is monotonically decreasing, ψ
′′
(ρ(ξ)) ≤ ψ

′′
(ρ((1 + 1√

1+2κ
)δ)). Hence 1

ψ′′(ρ(ξ))
≥

1
ψ′′ (ρ((1+ 1√

1+2κ
)δ))

. Therefore we have

ᾱ ≥ 1
δ
√

1 + 2κ
1

ψ′′(ρ((1 + 1√
1+2κ

)δ))

∫ (1+ 1√
1+2κ

)δ

δ
dξ =

1
1 + 2κ

1
ψ′′(ρ((1 + 1√

1+2κ
)δ))

.

Let a := 1 + 1√
1+2κ

and t = ρ(aδ). Note that a ≤ 2. Then by Lemma 2.10 (ii) and the
definition of ρ,

1 ≥ t = ρ(aδ) ≥ 1
2aδ + 1

.

Since p ∈ [0, 1] and t ≤ 1, we have ptp ≤ 1. Using Theorem 2.11, we have for p ∈ [0, 1],

ᾱ ≥ 1
(1 + 2κ)

1
ψ′′(ρ(aδ))

=
1

(1 + 2κ)
1

ψ′′(t)
=

1
(1 + 2κ)

1
ptp−1 + t−2

=
1

(1 + 2κ)
1

t−1(ptp + t−1)
≥ 1

(1 + 2κ)
1

t−1(1 + t−1)

≥ 1
(1 + 2κ)

1
(2aδ + 1)(2aδ + 2)

=
1

2(1 + 2κ)
1

(2aδ + 1)(aδ + 1)
≥ 1

4(1 + 2κ)
1

(aδ + 1)2

≥ 1
4(1 + 2κ)

1
(2δ + 6δ)2

=
1

256(1 + 2κ)δ2
.

2

Define

α̃ =
1

256(1 + 2κ)δ2
. (18)

Then using Lemma 3.6 and (13), we have

α̃ =
1

256(1 + 2κ)δ2
≤ 1

2(1 + 2κ)
1

(2aδ + 1)(aδ + 1)
≤ 1

2
√

1 + 2κ δ(2δ + 1)
= α̂.

By Lemma 3.2, α̃ is strictly feasible step size. Thus we will use α̃ as the default step size in the
algorithm.

Lemma 3.7. (Lemma 3.12 in [14]) Let h be a twice differentiable convex function with h(0) =
0, h

′
(0) < 0 and let h attain its (global) minimum at t∗ > 0. If h

′′
is increasing for t ∈ [0, t∗],

then h(t) ≤ th
′
(0)
2 for 0 ≤ t ≤ t∗.

Lemma 3.8. (Lemma 4.8 in [3]) If the step size α satisfies α ≤ ᾱ, then f(α) ≤ −αδ2.

In the following theorem we obtain the upper bound for the difference f(α).
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Theorem 3.9. Let α̃ be a step size as defined in (18). Then we have

f(α̃) ≤ − 1
256(1 + 2κ)

. (19)

Proof: By Lemma 3.6 and (18), α̃ ≤ ᾱ. Thus by Lemma 3.8,

f(α̃) ≤ −α̃δ2 = − δ2

256(1 + 2κ)δ2
= − 1

256(1 + 2κ)
.

2

We define the value of Ψ(v) after the µ-update as Ψ0 and the subsequent values in the same
outer iteration are denoted as Ψk, k = 1, 2, · · · . Let K denote the total number of inner
iterations in the outer iteration. Then by the definition of K, we have

ΨK−1 > τ, 0 ≤ ΨK ≤ τ.

In the following lemma, we obtain the upper bound for the total number of inner iterations
which we needed to return to the τ -neighborhood again.

Lemma 3.10. Let K be the total number of inner iterations in an outer iteration. Then we have

K ≤ 256(1 + 2κ)Ψ0,

where Ψ0 denotes the value of Ψ(v) after the µ-update.

Proof: Using Theorem 3.9, we have f(α̃) ≤ − 1
256(1+2κ) . This implies that ΨK −ΨK−1 ≤

− 1
256(1+2κ) and 0 ≤ ΨK ≤ ΨK−1− 1

256(1+2κ) ≤ ΨK−2− 2
256(1+2κ) ≤ · · · ≤ Ψ0− K

256(1+2κ) .
Therefore K is bounded above by

K ≤ 256(1 + 2κ)Ψ0.

This completes the proof. 2

From (10), we have Ψ0 ≤ (1+p)n
2(1−θ)

(
θ + τ

n +
√(

τ
n

)2 + 2τ
n

)2

and from Lemma 3.10, we have

K ≤ 128(1+2κ)(p+1)n
(1−θ)

(
θ + τ

n +
√(

τ
n

)2 + 2τ
n

)2

. Thus the upper bound for the total number

of iterations is obtained by multiplying the number K by the number of outer iterations. If
the central path parameter µ has the initial value µ0 and is updated by multiplying 1− θ, with
0 < θ < 1, then after at most

⌈
1
θ log nµ0

ε

⌉
iterations we have nµ ≤ ε ([16]). Thus the total

number of iterations is bounded above by 128(1+2κ)(p+1)n
θ(1−θ)

(
θ + τ

n +
√(

τ
n

)2 + 2τ
n

)2

log nµ0

ε .

So we obtain the main result as follows.

Theorem 3.11. Let a P∗(κ) linear complementarity problem be given, where κ ≥ 0. Assume
that a strictly feasible starting point (x0, s0) is available with Ψ(x0, s0, µ0) ≤ τ for some
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µ0 > 0. Then the total number of iterations to have solution (x, s) with xT s ≤ ε is bounded
above by 


128(1 + 2κ)(p + 1)n

(1− θ)

(
θ +

τ

n
+

√( τ

n

)2
+

2τ

n

)2



⌈
1
θ

log
nµ0

ε

⌉
.

Remark 3.12. For large-update methods with τ = O(n) and θ = Θ(1), the algorithm has
O((1 + 2κ)n log n

ε ) iteration complexity. Note that for small-update methods with θ = n−
1
2

and τ = 1, we have O((1 + 2κ)
√

n log n
ε ) which is the best known complexity so far.
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