NEW COMPLEXITY ANALYSIS OF IPM FOR $P_{*}(\kappa)$ LCP BASED ON KERNEL FUNCTIONS

GYEONG-MI CHO ${ }^{1}$, MIN-KYUNG KIM ${ }^{2}$, AND YONG-HOON LEE ${ }^{2 \dagger}$
${ }^{1}$ Department of Multimedia Engineering, Dongseo University, Pusan 617-716, Korea
E-mail address: gcho@dongseo.ac.kr
${ }^{2}$ Department of Mathematics, Pusan National University, Pusan $609-735$, Korea
E-mail address: \{mk-kim, yhlee\}@pusan.ac.kr

Abstract

In this paper we extend primal-dual interior point algorithm for linear optimization (LO) problems to $P_{*}(\kappa)$ linear complementarity problems(LCPs) ([1]). We define proximity functions and search directions based on kernel functions, $\psi(t)=\frac{t^{p+1}-1}{p+1}-\log t, p \in[0,1]$, which is a generalized form of the one in [16]. It is the first to use this class of kernel functions in the complexity analysis of interior point method(IPM) for $P_{*}(\kappa)$ LCPs. We show that if a strictly feasible starting point is available, then new large-update primal-dual interior point algorithms for $P_{*}(\kappa)$ LCPs have $O\left((1+2 \kappa) n \log \frac{n}{\varepsilon}\right)$ complexity which is similar to the one in [16]. For small-update methods, we have $O\left((1+2 \kappa) \sqrt{n} \log \frac{n}{\varepsilon}\right)$ which is the best known complexity so far.

1. Introduction

In this paper we consider the following linear complementarity problem (LCP) as follows :

$$
\begin{equation*}
s=M x+q, x s=0, x \geq 0, s \geq 0 \tag{1}
\end{equation*}
$$

where $M \in R^{n \times n}$ is a $P_{*}(\kappa)$ matrix and $q \in R^{n}$.
LCPs have many applications in mathematical programming and equilibrium problems. Indeed, it is known that by exploiting the first-order optimality conditions of the optimization problem, any differentiable convex quadratic program can be formulated into a monotone linear complementarity problem, i.e. $P_{*}(0) \mathrm{LCP}$, and vice versa([17]). And variational inequality problems are widely used in the study of equilibrium in economics, transportation planning and game theory. And variational inequality problems have a close connection to the LCPs. The reader can refer to [4] for the basic theory, algorithms and applications.

[^0]The primal-dual IPM for LO problem was first introduced in [7, 11]. Kojima et al.([7]) proved the polynomial computational complexity of the algorithm for LO problem, and since then many other algorithms have been developed based on the primal-dual strategy. Kojima et al.([9]) proposed a polynomial time algorithm for monotone linear complementarity problems, i.e. $P_{*}(0)$ LCPs. Kojima et al.([8]) proved the existence of the central path for any $P_{*}(\kappa)$ LCP and generalized previously known results to the wider class of so called $P_{*}(\kappa)$ LCPs and unified interior point methods(IPMs) for LCPs. Since then an interior point algorithm's quality is measured by the fact whether it can be generalized to $P_{*}(\kappa)$ LCPs or not([6]). Miao ([12]) extended the Mizuno-Todd-Ye predictor-corrector method to $P_{*}(\kappa)$ LCPs and his algorithm has $O((1+\kappa) \sqrt{n} L)$ iteration complexity. Recently, Illés and Nagy([6]) gives a version of Mizuno-Todd-Ye predictor-corrector interior point algorithm for the $P_{*}(\kappa)$ LCP and show the iteration complexity $O\left((1+\kappa)^{\frac{3}{2}} \sqrt{n} L\right)$.

In this paper we propose new large-update primal-dual interior point algorithms for $P_{*}(\kappa)$ LCP and show that the algorithm has $O\left((1+2 \kappa) n \log \frac{n}{\varepsilon}\right)$ iteration complexity which is similar to the one in [16]. For $p=1$, the kernel function is a classical logarithmic barrier function which is studied in [16] for LO. Since $P_{*}(\kappa)$ LCP is a generalization of LO problem, we loose the orthogonality of the vectors $d x$ and d_{s}. So our analysis is different from the one in [13] and [15]. We define a neighborhood and use a search direction based on a specific class of kernel functions which are eligible. However we don't use the condition (iii) of eligible function (See Definition 2.4). Thus the analysis is different from others in [6], [8], [9], [10], and [12].

This paper is organized as follows. In Section 2 we recall some basic concepts and properties of the kernel functions. In Section 3 we show the complexity result.

We use the following notations throughout the paper : R_{+}^{n} denotes the set of n dimensional nonnegative vectors and R_{++}^{n}, the set of n dimensional positive vectors. For $x=$ $\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T} \in R^{n}, x_{\min }=\min \left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$, i.e. the minimal component of $x,\|x\|$ is the 2 -norm of x, and X is the diagonal matrix from vector x, i.e. $X=\operatorname{diag}(x)$. $x s$ denotes the componentwise product (Hadamard product) of vectors x and $s . x^{T} s$ is the scalar product of the vectors x and $s . e$ is the n-dimensional vector of ones and I is the n-dimensional identity matrix. J is the index set, i.e. $J=\{1,2, \cdots, n\}$. We write $f(x)=O(g(x))$ if $|f(x)| \leq k \mid$ $g(x) \mid$ for some positive constant k and $f(x)=\Theta(g(x))$ if $k_{1}|g(x)| \leq|f(x)| \leq k_{2}|g(x)|$ for some positive constants k_{1} and k_{2}.

2. Preliminaries

In this section we give some basic definitions and properties.
Definition 2.1. Let $\kappa \geq 0$. A matrix $M \in R^{n \times n}$ is called a $P_{*}(\kappa)$ matrix if

$$
(1+4 \kappa) \sum_{i \in J_{+}(x)} x_{i}(M x)_{i}+\sum_{i \in J_{-}(x)} x_{i}(M x)_{i} \geq 0
$$

for all $x \in R^{n}$, where $J_{+}(x)=\left\{i \in J: x_{i}(M x)_{i} \geq 0\right\}$ and $J_{-}(x)=\left\{i \in J: x_{i}(M x)_{i}<\right.$ $0\}$.

Remark 2.2. The class $P_{*}(\kappa)$ contains the class PSD of positive semi-definite matrices, i.e. matrices M satisfying $x^{T} M x \geq 0$ for all $x \in R^{n}$, and the class P of matrices with all the principal minors positive.

Definition 2.3. A function $\psi: R_{+} \rightarrow R_{+}$is called a kernel function if ψ is twice differentiable and satisfies the following conditions:
(i) $\psi^{\prime}(1)=\psi(1)=0$,
(ii) $\psi^{\prime \prime}(t)>0$, for all $t>0$,
(iii) $\lim _{t \rightarrow 0^{+}} \psi(t)=\lim _{t \rightarrow \infty} \psi(t)=\infty$.

Definition 2.4. A function $\psi\left(\in \mathcal{C}^{3}\right):(0, \infty) \rightarrow R$ is eligible if it satisfies the following conditions:
(i) $t \psi^{\prime \prime}(t)+\psi^{\prime}(t)>0, t>0$.
(ii) $\psi^{\prime \prime \prime}(t)<0, t>0$,
(iii) $2 \psi^{\prime \prime}(t)^{2}-\psi^{\prime}(t) \psi^{\prime \prime \prime}(t)>0,0<t \leq 1$.
(iv) $\psi^{\prime \prime}(t) \psi^{\prime}(\beta t)-\beta \psi^{\prime}(t) \psi^{\prime \prime}(\beta t)>0, t>1, \beta>1$.

Definition 2.5. A function $f: D(\subset R) \rightarrow R$ is exponentially convex if and only if $f\left(\sqrt{x_{1} x_{2}}\right) \leq$ $\frac{1}{2}\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right)$ for all $x_{1}, x_{2} \in D$.

We use the following lemma to prove that the modified Newton-system has a unique solution.
Lemma 2.6. (Lemma 4.1 in [8]) Let $M \in R^{n \times n}$ be a $P_{*}(\kappa)$ matrix and $x, s \in R_{++}^{n}$. Then for all $a \in R^{n}$ the system

$$
\left\{\begin{array}{l}
-M \Delta x+\Delta s=0 \\
S \Delta x+X \Delta s=a
\end{array}\right.
$$

has a unique solution $(\Delta x, \Delta s)$.
We denote the strictly feasible set of LCP (1) by \mathcal{F}^{o}, i.e.,

$$
\left.\mathcal{F}^{o}:=\left\{(x, s) \in R_{++}^{2 n}: s=M x+q\right)\right\} .
$$

Definition 2.7. $A(x, s) \in \mathcal{F}^{o}$ is an ε-approximate solution if and only if $x^{T} s \leq \varepsilon$ for $\varepsilon>0$.
To find an ε-approximate solution for (1) we relax the complementarity condition, i.e. the second equation in (1) and introduce the following parameterized system :

$$
\begin{equation*}
s=M x+q, x s=\mu e, x>0, s>0 \tag{2}
\end{equation*}
$$

where $\mu>0$. Without loss of generality, we assume that (1) is strictly feasible, i.e. there exists $\left(x^{0}, s^{0}\right)$ such that $s^{0}=M x^{0}+q, x^{0}>0, s^{0}>0$ ([8]). For given strictly feasible point $\left(x^{0}, s^{0}\right)$ we can always find $\mu^{0}>0$ such that $\Psi\left(x^{0}, s^{0}, \mu^{0}\right) \leq \tau$. Since M is a $P_{*}(\kappa)$ matrix and (1) is strictly feasible, (2) has a unique solution for any $\mu>0$. We denote the solution of (2) as $(x(\mu), s(\mu))$ for given $\mu>0$ and call it μ-center. We define the solution set
$\{(x(\mu), s(\mu)) \mid \mu>0\}$ as the central path of system (2). As $\mu \rightarrow 0$, the sequence $(x(\mu), s(\mu))$ approaches to the solution (x, s) of the system (1) ([8]). By defining the following notations:

$$
\begin{equation*}
d=\sqrt{\frac{x}{s}}, v=\sqrt{\frac{x s}{\mu}}, d_{x}=\frac{v \Delta x}{x}, d_{s}=\frac{v \Delta s}{s} \tag{3}
\end{equation*}
$$

we can write the scaled Newton-system as follows :

$$
\left\{\begin{align*}
-\bar{M} d_{x}+d_{s} & =0 \tag{4}\\
d_{x}+d_{s} & =v^{-1}-v
\end{align*}\right.
$$

where $\bar{M}=D M D$ and $D=\operatorname{diag}(d)$. Note that $v^{-1}-v$ in (4) is exactly the negative gradient of the logarithmic barrier function $\Psi_{l}(v)=\sum_{i=1}^{n}\left(\left(v_{i}^{2}-1\right) / 2-\log v_{i}\right)$, i.e.

$$
\begin{equation*}
d_{x}+d_{s}=-\nabla \Psi_{l}(v) \tag{5}
\end{equation*}
$$

In this paper we replace logarithmic barrier function with the generalized log-barrier function,

$$
\begin{equation*}
\Psi(v)=\sum_{i=1}^{n} \psi\left(v_{i}\right), \psi(t)=\frac{t^{p+1}-1}{p+1}-\log t, p \in[0,1] . \tag{6}
\end{equation*}
$$

ψ is called the kernel function of $\Psi(v)$ and corresponding Newton system is given as follows:

$$
\left\{\begin{array}{l}
-M \Delta x+\Delta s=0 \tag{7}\\
S \Delta x+X \Delta s=\mu e-\mu v^{p+1}
\end{array}\right.
$$

This system uniquely defines a search direction $(\Delta x, \Delta s)$ by Lemma 2.6 , since M is a $P_{*}(\kappa)$ matrix and (1) is strictly feasible. Throughout the paper, we assume that a proximity parameter τ and a barrier update parameter θ are given and $\tau=O(n)$ and $0<\theta<1$, fixed. The algorithm works as follows. We assume that strictly feasible point (x, s) with $\psi(x, s, \tau) \leq \tau$ is given. Then after decreasing μ to $\mu_{+}=(1-\theta) \mu$, for some fixed $\theta \in(0,1)$, we solve Newton system (7) to obtain the unique search direction. The positivity condition of a new iterate is ensured with the right choice of the step size α which is defined by some line search rule. This procedure is repeated until we find a new iterate $\left(x_{+}, s_{+}\right)$which is in a τ-neighborhood of the $\mu_{+}-$center and let $\mu:=\mu_{+},(x, s):=\left(x_{+}, s_{+}\right)$. Then μ is again reduced by the factor $1-\theta$ and we solve Newton system (7) targeting at the new μ_{+}-center, and so on. This process is repeated until μ is small enough, e.g. $n \mu \leq \varepsilon$. One distinguishes IPMs as large-update methods when $\theta=\Theta(1)$ and small-update methods when $\theta=\Theta\left(\frac{1}{\sqrt{n}}\right)$. The small-update methods have the best known iteration complexity, but in practice large-update methods are more efficient than small-update. In this paper we define a large-update IPM and the algorithm is defined as follows :

Algorithm

Input:
A threshold parameter $\tau>1$;
an accuracy parameter $\varepsilon>0$;
a fixed barrier update parameter $\theta, 0<\theta<1$;
starting point $\left(x^{0}, s^{0}\right)$ and $\mu^{0}>0$ such that $\Psi\left(x^{0}, s^{0}, \mu^{0}\right) \leq \tau$;
begin
$x:=x^{0} ; s:=s^{0} ; \mu:=\mu^{0} ;$
while $n \mu \geq \varepsilon$ do
begin
$\mu:=(1-\theta) \mu$;
while $\Psi(v)>\tau$ do
begin
solve (7) for Δx and Δs;
determine a step size α from (18);
$x:=x+\alpha \Delta x ;$
$s:=s+\alpha \Delta s ;$
end
end
end

For ψ we have

$$
\begin{equation*}
\psi^{\prime}(t)=t^{p}-\frac{1}{t}, \psi^{\prime \prime}(t)=p t^{p-1}+\frac{1}{t^{2}}, \psi^{\prime \prime \prime}(t)=p(p-1) t^{p-2}-\frac{2}{t^{3}} \tag{8}
\end{equation*}
$$

Since $\psi^{\prime \prime}(t)>0, \psi$ is strictly convex. Note that for $p \in[0,1], \psi(1)=\psi^{\prime}(1)=0$. From this fact ψ is determined by the second derivative, i.e., $\psi(t)=\int_{1}^{t} \int_{1}^{\xi} \psi^{\prime \prime}(\varsigma) d \varsigma d \xi$. We also define the norm-based proximity measure $\delta(v)$ as follows :

$$
\begin{equation*}
\delta(v)=\frac{1}{2}\|\nabla \Psi(v)\|=\frac{1}{2}\left\|d_{x}+d_{s}\right\| . \tag{9}
\end{equation*}
$$

Note that since $\Psi(v)$ is strictly convex and minimal at $v=e$, we have $\Psi(v)=0$ which is equivalent to $\delta(v)=0$ and to $v=e$. For the notational convenience we denote $\delta(v)$ by δ.
Lemma 2.8. Let δ be the value defined in (9). Then we have

$$
v_{\min } \geq \frac{1}{1+2 \delta}
$$

Proof: First, if $v_{\text {min }} \leq 1$, then we have

$$
\delta=\frac{1}{2}\|-\nabla \Psi(v)\|=\frac{1}{2}\left\|v^{-1}-v^{p}\right\| \geq \frac{1}{2}\left|v_{\min }^{-1}-v_{\min }^{p}\right| \geq \frac{1}{2}\left(v_{\min }^{-1}-1\right)
$$

Thus we have $v_{\min } \geq(1+2 \delta)^{-1}$. Secondly, if $v_{\min }>1$, then we have $v_{\min }>1 \geq \frac{1}{1+2 \delta}$.

In the following lemma we give key properties which are crucial in the analysis of the algorithm.

Lemma 2.9. Kernel function ψ in (6) satisfies the following properties.
(i) $t \psi^{\prime \prime}(t)+\psi^{\prime}(t)>0, t>0$.
(ii) $\psi^{\prime \prime \prime}(t)<0, t>0$,
(iii) $\psi^{\prime \prime}(t) \psi^{\prime}(\beta t)-\beta \psi^{\prime}(t) \psi^{\prime \prime}(\beta t)>0, t>1, \beta>1$.

Proof: (i) : From (8), $t \psi^{\prime \prime}(t)+\psi^{\prime}(t)=t\left(p t^{p-1}+\frac{1}{t^{2}}\right)+\left(t^{p}-\frac{1}{t}\right)=(p+1) t^{p}>0$, for $t>0$. (ii): By (8), it is obvious.
(iii): By (8), $\psi^{\prime \prime}(t) \psi^{\prime}(\beta t)-\beta \psi^{\prime}(t) \psi^{\prime \prime}(\beta t)=\frac{t^{p}(1+p)\left(\beta^{p+1}-1\right)}{\beta t^{2}}>0$, for $p \in[0,1], t>1$, $\beta>1$.

By Lemma $2.9(i)$ and Lemma 1 in [14], ψ is exponentially convex. Let $\varrho:[0, \infty) \rightarrow[1, \infty)$ be the inverse function of ψ for $t \geq 1, \rho:[0, \infty) \rightarrow(0,1]$ the inverse function of $-\frac{1}{2} \psi^{\prime}(t)$ for $t \in(0,1]$. Then we have the following lemma.

Lemma 2.10. (Example 9 in [5])
(i) $(1+(p+1) s)^{\frac{1}{p+1}} \leq \varrho(s) \leq 1+s+\sqrt{s^{2}+2 s}, s \geq 0$.
(ii) $\rho(s) \geq \frac{1}{(2 s+1)}, s>0$.

Now we obtain a lower bound for δ in terms of the proximity function $\Psi(v)$.
Theorem 2.11. Let δ be the norm-based proximity measure as defined in (9). If $\Psi(v) \geq \tau$ for $\tau \geq 1$, then we have

$$
\delta \geq \frac{1}{6}(\Psi(v))^{\frac{p}{p+1}}
$$

Proof: By Theorem 4.9 in [1], Lemma $2.10(i)$ and $\Psi(v) \geq 1$, we get

$$
\begin{aligned}
\delta & \geq \frac{1}{2}\left(\varrho(\Psi(v))^{p}-\frac{1}{\varrho(\Psi(v))}\right) \geq \frac{1}{2}\left(((p+1) \Psi(v)+1)^{\frac{p}{p+1}}-\frac{1}{((p+1) \Psi(v)+1)^{\frac{1}{p+1}}}\right) \\
& =\frac{1}{2} \frac{(p+1) \Psi(v)}{((p+1) \Psi(v)+1)^{\frac{1}{p+1}}} \geq \frac{(p+1) \Psi(v)}{2(1+2 \Psi(v))^{\frac{1}{p+1}}} \geq \frac{(p+1) \Psi(v)}{6 \Psi(v)^{\frac{1}{p+1}}} \geq \frac{1}{6} \Psi(v)^{\frac{p}{p+1}},
\end{aligned}
$$

where $p \in[0,1]$.
Note that at the start of outer iteration of the algorithm, just before the update of μ with the factor $1-\theta$, we have $\Psi(v) \leq \tau$. Due to the update of μ the vector v is divided by the factor $\sqrt{1-\theta}$, with $0<\theta<1$, which in general leads to an increase in the value of $\Psi(v)$. By using the following lemma, we obtain an estimate for the effect of a μ-update on the value of $\Psi(v)$.

Lemma 2.12. If $t>1$, then $\psi(t)<\frac{1}{2} \psi^{\prime \prime}(1)(t-1)^{2}$.

Proof: By using Taylor's Theorem and $\psi(1)=\psi^{\prime}(1)=0$,

$$
\begin{aligned}
\psi(t) & =\psi(1)+\psi^{\prime}(1)(t-1)+\frac{1}{2} \psi^{\prime \prime}(t-1)^{2}+\frac{1}{3} \psi^{\prime \prime \prime}(\xi)(\xi-1)^{3} \\
& =\frac{1}{2} \psi^{\prime \prime}(t-1)^{2}+\frac{1}{3} \psi^{\prime \prime \prime}(\xi)(\xi-1)^{3}
\end{aligned}
$$

where $1 \leq \xi \leq t$ if $t>1$. Since $\psi^{\prime \prime \prime}<0$, we obtain the desired result.
Lemma 2.13. If $\Psi(v) \leq \tau$, then we have for $0<\theta<1$

$$
\Psi\left(\frac{v}{\sqrt{1-\theta}}\right) \leq \frac{(1+p) n}{2(1-\theta)}\left(\theta+\frac{\tau}{n}+\sqrt{\left(\frac{\tau}{n}\right)^{2}+\frac{2 \tau}{n}}\right)^{2}
$$

Proof: By the definition of ϱ and $\frac{1}{\sqrt{1-\theta}} \geq 1, \frac{1}{\sqrt{1-\theta}} \varrho\left(\frac{\Psi(v)}{n}\right) \geq 1$. By Theorem 3.2 in [1], Lemma $2.12(i)$ with $\psi^{\prime \prime}(1)=1+p$, and Lemma 2.10, we have

$$
\begin{aligned}
\Psi\left(\frac{v}{\sqrt{1-\theta}}\right) & \leq n \psi\left(\frac{\varrho\left(\frac{\Psi(v)}{n}\right)}{\sqrt{1-\theta}}\right) \leq \frac{(1+p) n}{2}\left(\frac{\varrho\left(\frac{\Psi(v)}{n}\right)}{\sqrt{1-\theta}}-1\right)^{2} \\
& \leq \frac{(1+p) n}{2}\left(\frac{1+\frac{\tau}{n}+\sqrt{\left(\frac{\tau}{n}\right)^{2}+\frac{2 \tau}{n}}-\sqrt{1-\theta}}{\sqrt{1-\theta}}\right)^{2} \\
& \leq \frac{(1+p) n}{2(1-\theta)}\left(\theta+\frac{\tau}{n}+\sqrt{\left(\frac{\tau}{n}\right)^{2}+\frac{2 \tau}{n}}\right)^{2}
\end{aligned}
$$

By using $1-\theta=\frac{\theta}{1+\sqrt{1-\theta}} \leq \theta$, the last inequality holds.

Define Ψ_{0} as the value of $\Psi(v)$ after the μ-update. Then we have

$$
\begin{equation*}
\Psi_{0} \leq \frac{(1+p) n}{2(1-\theta)}\left(\theta+\frac{\tau}{n}+\sqrt{\left(\frac{\tau}{n}\right)^{2}+\frac{2 \tau}{n}}\right)^{2} \tag{10}
\end{equation*}
$$

For large-update methods with $\tau=O(n)$ and $\theta=O(1)$, we have $\Psi_{0}=O(n)$.

3. Complexity Analysis

In this section we analyze the complexity of the algorithm. Since $P_{*}(\kappa)$ LCPs are generalization of LO problems, we loose the orthogonality of vectors d_{x} and d_{s}. So the analysis is different from LO case([1], [5], [7], [13], [16]). After a damped step for fixed μ we have $x_{+}=x+\alpha \Delta x, s_{+}=s+\alpha \Delta s$. From (3), we have $x_{+}=x\left(e+\alpha \frac{\Delta x}{x}\right)=$ $x\left(e+\alpha \frac{d_{x}}{v}\right)=\frac{x}{v}\left(v+\alpha d_{x}\right), s_{+}=s\left(e+\alpha \frac{\Delta s}{s}\right)=s\left(e+\alpha \frac{d_{s}}{v}\right)=\frac{s}{v}\left(v+\alpha d_{s}\right)$. Thus we
have $v_{+}^{2}=\frac{x_{+} s_{+}}{\mu}=\left(v+\alpha d_{x}\right)\left(v+\alpha d_{s}\right)$. Since M is a $P_{*}(\kappa)$ matrix and $M \Delta x=\Delta s$ from (7), for $\Delta x \in R^{n}$ we have

$$
(1+4 \kappa) \sum_{i \in J_{+}} \Delta x_{i} \Delta s_{i}+\sum_{i \in J_{-}} \Delta x_{i} \Delta s_{i} \geq 0
$$

where $J_{+}=\left\{i \in J: \Delta x_{i} \Delta s_{i} \geq 0\right\}, J_{-}=J-J_{+}$and $\Delta x_{i}, \Delta s_{i}$ denote the $i-$ th component of the vector Δx and Δs, respectively. Since $d_{x} d_{s}=\frac{v^{2} \Delta x \Delta s}{x s}=\frac{\Delta x \Delta s}{\mu}$ and $\mu>0$,

$$
\begin{equation*}
(1+4 \kappa) \sum_{i \in J_{+}}\left[d_{x}\right]_{i}\left[d_{s}\right]_{i}+\sum_{i \in J_{-}}\left[d_{x}\right]_{i}\left[d_{s}\right]_{i} \geq 0 \tag{11}
\end{equation*}
$$

where $\left[d_{x}\right]_{i}$ and $\left[d_{s}\right]_{i}$ denote the $i-$ th component of the vector d_{x} and d_{s}, respectively. In the following lemma we obtain the bound for $\left\|d_{x}\right\|$ and $\left\|d_{s}\right\|$.

Lemma 3.1. (Lemma 4.2 in [3]) $\sum_{i=1}^{n}\left(\left[d_{x}\right]_{i}^{2}+\left[d_{s}\right]_{i}^{2}\right) \leq 4(1+2 \kappa) \delta^{2},\left\|d_{x}\right\| \leq 2 \sqrt{1+2 \kappa} \delta$ and $\left\|d_{s}\right\| \leq 2 \sqrt{1+2 \kappa} \delta$.

Lemma 3.2. Let δ be the value defined in (9). Then we have

$$
\begin{equation*}
\left\|\left(x^{-1} \Delta x, s^{-1} \Delta s\right)\right\| \leq 2 \sqrt{1+2 \kappa} \delta(1+2 \delta) \tag{12}
\end{equation*}
$$

Proof: By using Lemma 3.1 and Lemma 2.8, we have

$$
\begin{aligned}
\left\|\left(x^{-1} \Delta x, s^{-1} \Delta s\right)\right\| & =\left\|\left(v^{-1} d_{x}, v^{-1} d_{s}\right)\right\| \leq \frac{1}{v_{\min }} \sqrt{\left\|d_{x}\right\|^{2}+\left\|d_{s}\right\|^{2}} \\
& \leq \frac{1}{v_{\min }} 2 \sqrt{1+2 \kappa} \delta=2 \sqrt{1+2 \kappa} \delta(1+2 \delta)
\end{aligned}
$$

Define

$$
\begin{equation*}
\hat{\alpha}=\frac{1}{2 \sqrt{1+2 \kappa} \delta(1+2 \delta)} \tag{13}
\end{equation*}
$$

Then for $\alpha \in[0, \hat{\alpha}]$, we get $x(\alpha)=x+\alpha \Delta x>0$ and $s(\alpha)>0$. Indeed, if $\Delta x>0$, it is clear. Otherwise, there exists an index set \bar{J} such that $\bar{J}=\left\{i \in J: \Delta x_{i}<0\right\}$. From (14),

$$
\max _{i \in \bar{J}}\left(-x^{-1} \Delta x\right)_{i} \leq\left\|-x^{-1} \Delta x\right\| \leq 2 \sqrt{1+2 \kappa} \delta(1+2 \delta)=\hat{\alpha}^{-1}
$$

Thus $\min _{i \in \bar{J}}\left(-x(\Delta x)^{-1}\right)_{i} \geq \hat{\alpha} \geq \alpha$ and $x_{i}+\alpha \Delta x_{i}>0$ for $i \in \bar{J}$ and $\alpha \in[0, \hat{\alpha}]$. Hence $x+\alpha \Delta x>0$ for $\alpha \in[0, \hat{\alpha}]$. By the same way, we can get the case $s(\alpha)=s+\alpha \Delta s(\alpha)>0$ for $\alpha \in[0, \hat{\alpha}]$. Since $\psi(v)$ is exponentially convex, we have

$$
\Psi\left(v_{+}\right)=\Psi\left(\sqrt{\left(v+\alpha d_{x}\right)\left(v+\alpha d_{s}\right)}\right) \leq \frac{1}{2}\left(\Psi\left(v+\alpha d_{x}\right)+\Psi\left(v+\alpha d_{s}\right)\right)
$$

For given $\mu>0$ by letting $f(\alpha)$ the difference of the new and old proximity measures, i.e.

$$
f(\alpha)=\Psi\left(v_{+}\right)-\Psi(v)
$$

we have $f(\alpha) \leq f_{1}(\alpha)$, where $f_{1}(\alpha):=\frac{1}{2}\left(\Psi\left(v+\alpha d_{x}\right)+\Psi\left(v+\alpha d_{s}\right)\right)-\Psi(v)$. Note that $f(0)=f_{1}(0)=0$. By taking the derivative of $f_{1}(\alpha)$ with respect to α, we have

$$
f_{1}^{\prime}(\alpha)=\frac{1}{2} \sum_{i=1}^{n}\left(\psi^{\prime}\left(v_{i}+\alpha\left[d_{x}\right]_{i}\right)\left[d_{x}\right]_{i}+\psi^{\prime}\left(v_{i}+\alpha\left[d_{s}\right]_{i}\right)\left[d_{s}\right]_{i}\right)
$$

Using (5) and the definition of δ, we have

$$
\begin{equation*}
f_{1}^{\prime}(0)=\frac{1}{2} \nabla \Psi(v)^{T}\left(d_{x}+d_{s}\right)=-\frac{1}{2} \nabla \Psi(v)^{T} \nabla \Psi(v)=-2 \delta^{2} . \tag{14}
\end{equation*}
$$

By taking the derivative of $f_{1}^{\prime}(\alpha)$ with respect to α, we have

$$
\begin{equation*}
f_{1}^{\prime \prime}(\alpha)=\frac{1}{2} \sum_{i=1}^{n}\left(\psi^{\prime \prime}\left(v_{i}+\alpha\left[d_{x}\right]_{i}\right)\left[d_{x}\right]_{i}^{2}+\psi^{\prime \prime}\left(v_{i}+\alpha\left[d_{s}\right]_{i}\right)\left[d_{s}\right]_{i}^{2}\right) \tag{15}
\end{equation*}
$$

In the followings we cite some technical lemmas without proof. We obtain the feasible step size α such that the proximity measure is decreasing when we take a new iterate for fixed μ in Lemma 3.5.
Lemma 3.3. (Lemma 4.3 in [3]) $f_{1}^{\prime \prime}(\alpha) \leq 2(1+2 \kappa) \delta^{2} \psi^{\prime \prime}\left(v_{\min }-2 \alpha \sqrt{1+2 \kappa} \delta\right)$.
Lemma 3.4. (Lemma 4.4 in [3]) $f_{1}^{\prime}(\alpha) \leq 0$ if α is satisfying

$$
\begin{equation*}
-\psi^{\prime}\left(v_{\min }-2 \alpha \delta \sqrt{1+2 \kappa}\right)+\psi^{\prime}\left(v_{\min }\right) \leq \frac{2 \delta}{\sqrt{1+2 \kappa}} \tag{16}
\end{equation*}
$$

Lemma 3.5. (Lemma 4.5 in [3]) Let $\rho:[0, \infty) \rightarrow(0,1]$ denote the inverse function of the restriction of $-\frac{1}{2} \psi^{\prime}(t)$ to the interval $(0,1]$. Then the largest step size α that satisfies (16) is given by

$$
\begin{equation*}
\bar{\alpha}:=\frac{1}{2 \delta \sqrt{1+2 \kappa}}\left(\rho(\delta)-\rho\left(\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta\right)\right) . \tag{17}
\end{equation*}
$$

In the following lemma we obtain the lower bound for $\bar{\alpha}$ in Lemma 3.5.
Lemma 3.6. Let ρ and $\bar{\alpha}$ be the values as defined in Lemma 3.5. Then we have

$$
\bar{\alpha} \geq \frac{1}{256(1+2 \kappa) \delta^{2}} .
$$

Proof: By the definition of $\rho,-\psi^{\prime}(\rho(\delta))=2 \delta$. By taking the derivative with respect to δ, we get $-\psi^{\prime \prime}(\rho(\delta)) \rho^{\prime}(\delta)=2$. Since $\psi^{\prime \prime}>0$, we have $\rho^{\prime}(\delta)=-\frac{2}{\psi^{\prime \prime}(\rho(\delta))}<0$. Hence ρ is monotonically decreasing. By (17) and the fundamental theorem of calculus, we have

$$
\begin{aligned}
\bar{\alpha} & =\frac{1}{2 \delta \sqrt{1+2 \kappa}}\left(\rho(\delta)-\rho\left(\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta\right)\right) \\
& =\frac{1}{2 \delta \sqrt{1+2 \kappa}} \int_{\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta}^{\delta} \rho^{\prime}(\xi) d \xi=\frac{1}{\delta \sqrt{1+2 \kappa}} \int_{\delta}^{\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta} \frac{d \xi}{\psi^{\prime \prime}(\rho(\xi))} .
\end{aligned}
$$

Since $\delta \leq \xi \leq\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta$ and ρ is monotonically decreasing, $\rho(\xi) \geq \rho\left(\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta\right)$. Since $\psi^{\prime \prime}$ is monotonically decreasing, $\psi^{\prime \prime}(\rho(\xi)) \leq \psi^{\prime \prime}\left(\rho\left(\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta\right)\right)$. Hence $\frac{1}{\psi^{\prime \prime}(\rho(\xi))} \geq$ $\frac{1}{\psi^{\prime \prime}\left(\rho\left(\left(1+\frac{1}{\sqrt{1+2 k}}\right) \delta\right)\right)}$. Therefore we have

$$
\bar{\alpha} \geq \frac{1}{\delta \sqrt{1+2 \kappa}} \frac{1}{\psi^{\prime \prime}\left(\rho\left(\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta\right)\right)} \int_{\delta}^{\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta} d \xi=\frac{1}{1+2 \kappa} \frac{1}{\psi^{\prime \prime}\left(\rho\left(\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta\right)\right)} .
$$

Let $a:=1+\frac{1}{\sqrt{1+2 \kappa}}$ and $t=\rho(a \delta)$. Note that $a \leq 2$. Then by Lemma $2.10(i i)$ and the definition of ρ,

$$
1 \geq t=\rho(a \delta) \geq \frac{1}{2 a \delta+1}
$$

Since $p \in[0,1]$ and $t \leq 1$, we have $p t^{p} \leq 1$. Using Theorem 2.11, we have for $p \in[0,1]$,

$$
\begin{aligned}
\bar{\alpha} & \geq \frac{1}{(1+2 \kappa)} \frac{1}{\psi^{\prime \prime}(\rho(a \delta))}=\frac{1}{(1+2 \kappa)} \frac{1}{\psi^{\prime \prime}(t)}=\frac{1}{(1+2 \kappa)} \frac{1}{p t^{p-1}+t^{-2}} \\
& =\frac{1}{(1+2 \kappa)} \frac{1}{t^{-1}\left(p t^{p}+t^{-1}\right)} \geq \frac{1}{(1+2 \kappa)} \frac{1}{t^{-1}\left(1+t^{-1}\right)} \\
& \geq \frac{1}{(1+2 \kappa)} \frac{1}{(2 a \delta+1)(2 a \delta+2)}=\frac{1}{2(1+2 \kappa)} \frac{1}{(2 a \delta+1)(a \delta+1)} \geq \frac{1}{4(1+2 \kappa)} \frac{1}{(a \delta+1)^{2}} \\
& \geq \frac{1}{4(1+2 \kappa)} \frac{1}{(2 \delta+6 \delta)^{2}}=\frac{1}{256(1+2 \kappa) \delta^{2}} .
\end{aligned}
$$

Define

$$
\begin{equation*}
\tilde{\alpha}=\frac{1}{256(1+2 \kappa) \delta^{2}} . \tag{18}
\end{equation*}
$$

Then using Lemma 3.6 and (13), we have

$$
\tilde{\alpha}=\frac{1}{256(1+2 \kappa) \delta^{2}} \leq \frac{1}{2(1+2 \kappa)} \frac{1}{(2 a \delta+1)(a \delta+1)} \leq \frac{1}{2 \sqrt{1+2 \kappa} \delta(2 \delta+1)}=\hat{\alpha} .
$$

By Lemma 3.2, $\tilde{\alpha}$ is strictly feasible step size. Thus we will use $\tilde{\alpha}$ as the default step size in the algorithm.
Lemma 3.7. (Lemma 3.12 in [14]) Let h be a twice differentiable convex function with $h(0)=$ $0, h^{\prime}(0)<0$ and let h attain its (global) minimum at $t^{*}>0$. If $h^{\prime \prime}$ is increasing for $t \in\left[0, t^{*}\right]$, then $h(t) \leq \frac{t h^{\prime}(0)}{2}$ for $0 \leq t \leq t^{*}$.

Lemma 3.8. (Lemma 4.8 in [3]) If the step size α satisfies $\alpha \leq \bar{\alpha}$, then $f(\alpha) \leq-\alpha \delta^{2}$.
In the following theorem we obtain the upper bound for the difference $f(\alpha)$.

Theorem 3.9. Let $\tilde{\alpha}$ be a step size as defined in (18). Then we have

$$
\begin{equation*}
f(\tilde{\alpha}) \leq-\frac{1}{256(1+2 \kappa)} \tag{19}
\end{equation*}
$$

Proof: By Lemma 3.6 and (18), $\tilde{\alpha} \leq \bar{\alpha}$. Thus by Lemma 3.8,

$$
f(\tilde{\alpha}) \leq-\tilde{\alpha} \delta^{2}=-\frac{\delta^{2}}{256(1+2 \kappa) \delta^{2}}=-\frac{1}{256(1+2 \kappa)}
$$

We define the value of $\Psi(v)$ after the μ-update as Ψ_{0} and the subsequent values in the same outer iteration are denoted as $\Psi_{k}, k=1,2, \cdots$. Let K denote the total number of inner iterations in the outer iteration. Then by the definition of K, we have

$$
\Psi_{K-1}>\tau, 0 \leq \Psi_{K} \leq \tau
$$

In the following lemma, we obtain the upper bound for the total number of inner iterations which we needed to return to the τ-neighborhood again.

Lemma 3.10. Let K be the total number of inner iterations in an outer iteration. Then we have

$$
K \leq 256(1+2 \kappa) \Psi_{0}
$$

where Ψ_{0} denotes the value of $\Psi(v)$ after the μ-update.
Proof: Using Theorem 3.9, we have $f(\tilde{\alpha}) \leq-\frac{1}{256(1+2 \kappa)}$. This implies that $\Psi_{K}-\Psi_{K-1} \leq$ $-\frac{1}{256(1+2 \kappa)}$ and $0 \leq \Psi_{K} \leq \Psi_{K-1}-\frac{1}{256(1+2 \kappa)} \leq \Psi_{K-2}-\frac{2}{256(1+2 \kappa)} \leq \cdots \leq \Psi_{0}-\frac{K}{256(1+2 \kappa)}$. Therefore K is bounded above by

$$
K \leq 256(1+2 \kappa) \Psi_{0}
$$

This completes the proof.

From (10), we have $\Psi_{0} \leq \frac{(1+p) n}{2(1-\theta)}\left(\theta+\frac{\tau}{n}+\sqrt{\left(\frac{\tau}{n}\right)^{2}+\frac{2 \tau}{n}}\right)^{2}$ and from Lemma 3.10, we have $K \leq \frac{128(1+2 \kappa)(p+1) n}{(1-\theta)}\left(\theta+\frac{\tau}{n}+\sqrt{\left(\frac{\tau}{n}\right)^{2}+\frac{2 \tau}{n}}\right)^{2}$. Thus the upper bound for the total number of iterations is obtained by multiplying the number K by the number of outer iterations. If the central path parameter μ has the initial value μ^{0} and is updated by multiplying $1-\theta$, with $0<\theta<1$, then after at most $\left\lceil\frac{1}{\theta} \log \frac{n \mu^{0}}{\epsilon}\right\rceil$ iterations we have $n \mu \leq \epsilon([16])$. Thus the total number of iterations is bounded above by $\frac{128(1+2 \kappa)(p+1) n}{\theta(1-\theta)}\left(\theta+\frac{\tau}{n}+\sqrt{\left(\frac{\tau}{n}\right)^{2}+\frac{2 \tau}{n}}\right)^{2} \log \frac{n \mu^{0}}{\epsilon}$. So we obtain the main result as follows.

Theorem 3.11. Let a $P_{*}(\kappa)$ linear complementarity problem be given, where $\kappa \geq 0$. Assume that a strictly feasible starting point $\left(x^{0}, s^{0}\right)$ is available with $\Psi\left(x^{0}, s^{0}, \mu^{0}\right) \leq \tau$ for some
$\mu^{0}>0$. Then the total number of iterations to have solution (x, s) with $x^{T} s \leq \varepsilon$ is bounded above by

$$
\left\lceil\frac{128(1+2 \kappa)(p+1) n}{(1-\theta)}\left(\theta+\frac{\tau}{n}+\sqrt{\left(\frac{\tau}{n}\right)^{2}+\frac{2 \tau}{n}}\right)^{2}\right\rceil\left\lceil\frac{1}{\theta} \log \frac{n \mu^{0}}{\epsilon}\right\rceil
$$

Remark 3.12. For large-update methods with $\tau=O(n)$ and $\theta=\Theta(1)$, the algorithm has $O\left((1+2 \kappa) n \log \frac{n}{\varepsilon}\right)$ iteration complexity. Note that for small-update methods with $\theta=n^{-\frac{1}{2}}$ and $\tau=1$, we have $O\left((1+2 \kappa) \sqrt{n} \log \frac{n}{\varepsilon}\right)$ which is the best known complexity so far.

References

[1] Y.Q. Bai, M. El Ghami and C. Roos, A Comparative study of kernel functions for primal-dual interior-point algorithms in Linear Optimization, SIAM J. on Optimization 15, 101-128, 2005.
[2] Y.Q. Bai, J. Guo and C.Roos, A new kernel function yielding the best known iteration bounds for primal-dual interior-point algorithms, Technical Report, Delf University of Technology, 2006.
[3] G.M. Cho, M.K. Kim and Y.H. Lee, Complexity of large-update interior point algorithm for $P_{*}(\kappa)$ linear complementarity problems, Computers and Mathematics with Applications, 53, 948-960, 2007.
[4] R.W. Cottle, J.S. Pang and R.E. Stone, The linear complementarity problem, Academic Press Inc., San Diego, CA, 1992.
[5] M. El Ghami, New Primal-dual Interior-point Methods Based Kernel Functions, Ph.D thesis, Delft University of Technology, 2005.
[6] T. Illes and M. Nagy, The Mizuno-Todd-Ye predictor-corrector algorithm for sufficient matrix linear complementarity problem, European Journal of Operational Research, Vol 181, issue 3, 1097-1111, 2007.
[7] M. Kojima, N. Megiddo, T. Noma and A. Yoshise, A primal-dual interior point algorithm for linear programming, in: N. Megiddo(editor) Progress in Mathematical Programming; Interior Point Related Methods, Springer Verlag, New York, 29-47, 1989.
[8] M. Kojima, N. Megiddo, T. Noma and A. Yoshise, A Unifided Approach to Interior Point Algorithms for Linear Complementarity Problems, Vol.538, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, 1991.
[9] M. Kojima, S. Mizuno and A. Yoshise, A polynomial-time algorithm for a class of linear complementarity problems, Mathematical Programming 44, 1-26, 1989.
[10] M. Kojima, S. Mizuno and A. Yoshise, $A n O(\sqrt{n} L)$ iteration potential reduction algorithm for linear complementarity problems, Mathematical Programming 50, 331-342, 1991.
[11] N. Megiddo, Pathways to the optimal set in linear programming, in: N. Megiddo(editor), Progress in Mathematical Programming ; Interior point and Related Methods, Springer Verlag, New York, 313-158, 1989.
[12] J. Miao, A quadratically convergent $O((1+\kappa) \sqrt{n} L)$-iteration algorithm for the $P_{*}(\kappa)$-matrix linear complementarity problem, Mathematical Programming 69, 355-368, 1995.
[13] J. Peng, C. Roos and T. Terlaky, A new and efficient large-update interior-point method for linear optimization, Journal of computaional Technologies, 6(4):61-80, ISSN 1560-7534, 2001.
[14] J. Peng, C. Roos and T. Terlaky, Self-regular functions and new search directions for linear and semidefinite optimization, Mathematical Programming 93, 129-171, 2002.
[15] J. Peng, C. Roos, and T. Terlaky, Self-Regularity, A New Paradigm for Primal-Dual Interior-Point Algorithms, Princeton University Press, 2002.
[16] C. Roos, T. Terlaky and J. Ph. Vial, Theory and Algorithms for Linear Optimization, An Interior Approach, John Wiley and Sons, Chichester, UK, 1997.
[17] S.J. Wright, Primal-dual interior-point methods, SIAM, 1997.

[^0]: Received by the editors November 5, 2008.
 2000 Mathematics Subject Classification. 90C05, 90C51.
 Key words and phrases. primal-dual interior point method; kernel function; complexity; polynomial algorithm; large-update; linear complementarity; path-following.
 ${ }^{\dagger}$ Corresponding author.
 The corresponding author's work was supported for two years by Pusan National University Research Grant.

