J. KSIAM Vol.12, No.4, 227-238, 2008

NEW COMPLEXITY ANALYSIS OF IPM FOR $P_*(\kappa)$ LCP BASED ON KERNEL FUNCTIONS

GYEONG-MI CHO¹, MIN-KYUNG KIM², AND YONG-HOON $\text{LEE}^{2\dagger}$

¹DEPARTMENT OF MULTIMEDIA ENGINEERING, DONGSEO UNIVERSITY, PUSAN 617-716, KOREA *E-mail address*: gcho@dongseo.ac.kr

²DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY, PUSAN 609-735, KOREA *E-mail address*: {mk-kim, yhlee}@pusan.ac.kr

ABSTRACT. In this paper we extend primal-dual interior point algorithm for linear optimization (LO) problems to $P_*(\kappa)$ linear complementarity problems(LCPs) ([1]). We define proximity functions and search directions based on kernel functions, $\psi(t) = \frac{t^{p+1}-1}{p+1} -\log t$, $p \in [0, 1]$, which is a generalized form of the one in [16]. It is the first to use this class of kernel functions in the complexity analysis of interior point method(IPM) for $P_*(\kappa)$ LCPs. We show that if a strictly feasible starting point is available, then new large-update primal-dual interior point algorithms for $P_*(\kappa)$ LCPs have $O((1 + 2\kappa)n \log \frac{n}{\varepsilon})$ complexity which is similar to the one in [16]. For small-update methods, we have $O((1 + 2\kappa)\sqrt{n} \log \frac{n}{\varepsilon})$ which is the best known complexity so far.

1. INTRODUCTION

In this paper we consider the following linear complementarity problem (LCP) as follows :

$$s = Mx + q, \ xs = 0, \ x \ge 0, \ s \ge 0,$$
 (1)

where $M \in \mathbb{R}^{n \times n}$ is a $P_*(\kappa)$ matrix and $q \in \mathbb{R}^n$.

LCPs have many applications in mathematical programming and equilibrium problems. Indeed, it is known that by exploiting the first-order optimality conditions of the optimization problem, any differentiable convex quadratic program can be formulated into a monotone linear complementarity problem, i.e. $P_*(0)$ LCP, and vice versa([17]). And variational inequality problems are widely used in the study of equilibrium in economics, transportation planning and game theory. And variational inequality problems have a close connection to the LCPs. The reader can refer to [4] for the basic theory, algorithms and applications.

Received by the editors November 5, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 90C05, 90C51.

Key words and phrases. primal-dual interior point method; kernel function; complexity; polynomial algorithm; large-update; linear complementarity; path-following.

[†] Corresponding author.

The corresponding author's work was supported for two years by Pusan National University Research Grant.

The primal-dual IPM for LO problem was first introduced in [7, 11]. Kojima et al.([7]) proved the polynomial computational complexity of the algorithm for LO problem, and since then many other algorithms have been developed based on the primal-dual strategy. Kojima et al.([9]) proposed a polynomial time algorithm for monotone linear complementarity problems, i.e. $P_*(0)$ LCPs. Kojima et al.([8]) proved the existence of the central path for any $P_*(\kappa)$ LCPs and generalized previously known results to the wider class of so called $P_*(\kappa)$ LCPs and unified interior point methods(IPMs) for LCPs. Since then an interior point algorithm's quality is measured by the fact whether it can be generalized to $P_*(\kappa)$ LCPs or not([6]). Miao ([12]) extended the Mizuno-Todd-Ye predictor-corrector method to $P_*(\kappa)$ LCPs and his algorithm has $O((1 + \kappa)\sqrt{nL})$ iteration complexity. Recently, Illés and Nagy([6]) gives a version of Mizuno-Todd-Ye predictor-corrector interior point algorithm for the $P_*(\kappa)$ LCP and show the iteration complexity $O((1 + \kappa)^{\frac{3}{2}}\sqrt{nL})$.

In this paper we propose new large-update primal-dual interior point algorithms for $P_*(\kappa)$ LCP and show that the algorithm has $O((1+2\kappa)n\log\frac{n}{\varepsilon})$ iteration complexity which is similar to the one in [16]. For p = 1, the kernel function is a classical logarithmic barrier function which is studied in [16] for LO. Since $P_*(\kappa)$ LCP is a generalization of LO problem, we loose the orthogonality of the vectors dx and d_s . So our analysis is different from the one in [13] and [15]. We define a neighborhood and use a search direction based on a specific class of kernel functions which are eligible. However we don't use the condition (*iii*) of eligible function (See Definition 2.4). Thus the analysis is different from others in [6], [8], [9], [10], and [12].

This paper is organized as follows. In Section 2 we recall some basic concepts and properties of the kernel functions. In Section 3 we show the complexity result.

We use the following notations throughout the paper : R_+^n denotes the set of n dimensional nonnegative vectors and R_{++}^n , the set of n dimensional positive vectors. For $x = (x_1, x_2, \dots, x_n)^T \in R^n, x_{min} = \min\{x_1, x_2, \dots, x_n\}$, i.e. the minimal component of x, ||x|| is the 2-norm of x, and X is the diagonal matrix from vector x, i.e. X = diag(x). xs denotes the componentwise product (Hadamard product) of vectors x and s. x^Ts is the scalar product of the vectors x and s. e is the n-dimensional vector of ones and I is the n-dimensional identity matrix. J is the index set, i.e. $J = \{1, 2, \dots, n\}$. We write f(x) = O(g(x)) if $||f(x)| \le k | g(x)||$ for some positive constant k and $f(x) = \Theta(g(x))$ if $k_1 | g(x)| \le ||f(x)|| \le k_2 | |g(x)||$ for some positive constants k_1 and k_2 .

2. PRELIMINARIES

In this section we give some basic definitions and properties.

Definition 2.1. Let $\kappa \geq 0$. A matrix $M \in \mathbb{R}^{n \times n}$ is called a $P_*(\kappa)$ matrix if

$$(1+4\kappa)\sum_{i\in J_+(x)} x_i(Mx)_i + \sum_{i\in J_-(x)} x_i(Mx)_i \ge 0,$$

for all $x \in \mathbb{R}^n$, where $J_+(x) = \{i \in J : x_i(Mx)_i \ge 0\}$ and $J_-(x) = \{i \in J : x_i(Mx)_i < 0\}$.

Remark 2.2. The class $P_*(\kappa)$ contains the class PSD of positive semi-definite matrices, i.e. matrices M satisfying $x^T M x \ge 0$ for all $x \in \mathbb{R}^n$, and the class P of matrices with all the principal minors positive.

Definition 2.3. A function $\psi : R_+ \to R_+$ is called a kernel function if ψ is twice differentiable and satisfies the following conditions:

(i) $\psi'(1) = \psi(1) = 0$, (*ii*) $\psi''(t) > 0$, for all t > 0, (*iii*) $\lim_{t\to 0^+} \psi(t) = \lim_{t\to\infty} \psi(t) = \infty$.

Definition 2.4. A function $\psi \in \mathcal{C}^3$: $(0,\infty) \to R$ is eligible if it satisfies the following conditions: (i) $t\psi''(t) + \psi'(t) > 0, t > 0.$ (ii) $\psi'''(t) < 0, t > 0,$ (iii) $2\psi''(t)^2 - \psi'(t)\psi'''(t) > 0, 0 < t \le 1.$ (iv) $\psi''(t)\psi'(\beta t) - \beta\psi'(t)\psi''(\beta t) > 0, t > 1, \beta > 1.$

Definition 2.5. A function $f: D(\subset R) \to R$ is exponentially convex if and only if $f(\sqrt{x_1x_2}) \leq C$ $\frac{1}{2}(f(x_1) + f(x_2))$ for all $x_1, x_2 \in D$.

We use the following lemma to prove that the modified Newton-system has a unique solution.

Lemma 2.6. (Lemma 4.1 in [8]) Let $M \in \mathbb{R}^{n \times n}$ be a $P_*(\kappa)$ matrix and $x, s \in \mathbb{R}^n_{++}$. Then for all $a \in \mathbb{R}^n$ the system

$$\begin{cases} -M\Delta x + \Delta s = 0\\ S\Delta x + X\Delta s = a \end{cases}$$

has a unique solution $(\Delta x, \Delta s)$.

We denote the strictly feasible set of LCP (1) by \mathcal{F}^{o} , i.e.,

$$\mathcal{F}^o := \{ (x, s) \in R^{2n}_{++} : s = Mx + q \} \}.$$

Definition 2.7. $A(x,s) \in \mathcal{F}^o$ is an ε -approximate solution if and only if $x^T s < \varepsilon$ for $\varepsilon > 0$.

To find an ε -approximate solution for (1) we relax the complementarity condition, i.e. the second equation in (1) and introduce the following parameterized system :

$$s = Mx + q, \ xs = \mu e, \ x > 0, \ s > 0,$$
 (2)

where $\mu > 0$. Without loss of generality, we assume that (1) is strictly feasible, i.e. there exists (x^0, s^0) such that $s^0 = Mx^0 + q$, $x^0 > 0$, $s^0 > 0$ ([8]). For given strictly feasible point (x^0, s^0) we can always find $\mu^0 > 0$ such that $\Psi(x^0, s^0, \mu^0) \le \tau$. Since M is a $P_*(\kappa)$ matrix and (1) is strictly feasible, (2) has a unique solution for any $\mu > 0$. We denote the solution of (2) as $(x(\mu), s(\mu))$ for given $\mu > 0$ and call it μ -center. We define the solution set

 $\{(x(\mu), s(\mu)) \mid \mu > 0\}$ as the *central path* of system (2). As $\mu \to 0$, the sequence $(x(\mu), s(\mu))$ approaches to the solution (x, s) of the system (1) ([8]). By defining the following notations:

$$d = \sqrt{\frac{x}{s}}, v = \sqrt{\frac{xs}{\mu}}, d_x = \frac{v\Delta x}{x}, d_s = \frac{v\Delta s}{s},$$
(3)

we can write the scaled Newton-system as follows :

$$\begin{cases}
-\bar{M}d_x + d_s = 0, \\
d_x + d_s = v^{-1} - v,
\end{cases}$$
(4)

where $\overline{M} = DMD$ and D = diag(d). Note that $v^{-1} - v$ in (4) is exactly the negative gradient of the logarithmic barrier function $\Psi_l(v) = \sum_{i=1}^n ((v_i^2 - 1)/2 - \log v_i)$, i.e.

$$d_x + d_s = -\nabla \Psi_l(v). \tag{5}$$

In this paper we replace logarithmic barrier function with the generalized log-barrier function,

$$\Psi(v) = \sum_{i=1}^{n} \psi(v_i), \ \psi(t) = \frac{t^{p+1} - 1}{p+1} - \log t, \ p \in [0, 1].$$
(6)

 ψ is called the kernel function of $\Psi(v)$ and corresponding Newton system is given as follows:

$$\begin{cases} -M\Delta x + \Delta s = 0, \\ S\Delta x + X\Delta s = \mu e - \mu v^{p+1}. \end{cases}$$
(7)

This system uniquely defines a search direction $(\Delta x, \Delta s)$ by Lemma 2.6, since M is a $P_*(\kappa)$ matrix and (1) is strictly feasible. Throughout the paper, we assume that a proximity parameter τ and a barrier update parameter θ are given and $\tau = O(n)$ and $0 < \theta < 1$, fixed. The algorithm works as follows. We assume that strictly feasible point (x, s) with $\psi(x, s, \tau) \leq \tau$ is given. Then after decreasing μ to $\mu_+ = (1 - \theta)\mu$, for some fixed $\theta \in (0, 1)$, we solve Newton system (7) to obtain the unique search direction. The positivity condition of a new iterate is ensured with the right choice of the step size α which is defined by some line search rule. This procedure is repeated until we find a new iterate (x_+, s_+) which is in a τ -neighborhood of the μ_+ -center and let $\mu := \mu_+, (x, s) := (x_+, s_+)$. Then μ is again reduced by the factor $1 - \theta$ and we solve Newton system (7) targeting at the new μ_+ -center, and so on. This process is repeated until μ is small enough, e.g. $n\mu \leq \varepsilon$. One distinguishes IPMs as large-update methods when $\theta = \Theta(1)$ and small-update methods when $\theta = \Theta(\frac{1}{\sqrt{n}})$. The small-update methods have the best known iteration complexity, but in practice large-update methods are more efficient than small-update. In this paper we define a large-update IPM and the algorithm is defined as follows :

Algorithm

Input: A threshold parameter $\tau > 1$; an accuracy parameter $\varepsilon > 0$; a fixed barrier update parameter θ , $0 < \theta < 1$; starting point (x^0, s^0) and $\mu^0 > 0$ such that $\Psi(x^0, s^0, \mu^0) \le \tau$; begin $x := x^0; \ s := s^0; \ \mu := \mu^0;$ while $n\mu \geq \varepsilon$ do begin $\mu := (1 - \theta)\mu;$ while $\Psi(v) > \tau$ do begin solve (7) for Δx and Δs ; determine a step size α from (18); $x := x + \alpha \Delta x;$ $s := s + \alpha \Delta s;$ end end end

For ψ we have

$$\psi'(t) = t^p - \frac{1}{t}, \ \psi''(t) = pt^{p-1} + \frac{1}{t^2}, \ \psi'''(t) = p(p-1)t^{p-2} - \frac{2}{t^3}.$$
 (8)

Since $\psi''(t) > 0$, ψ is strictly convex. Note that for $p \in [0, 1]$, $\psi(1) = \psi'(1) = 0$. From this fact ψ is determined by the second derivative, i.e., $\psi(t) = \int_1^t \int_1^{\xi} \psi''(\varsigma) d\varsigma d\xi$. We also define the norm-based proximity measure $\delta(v)$ as follows :

$$\delta(v) = \frac{1}{2} \| \nabla \Psi(v) \| = \frac{1}{2} \| d_x + d_s \|.$$
(9)

Note that since $\Psi(v)$ is strictly convex and minimal at v = e, we have $\Psi(v) = 0$ which is equivalent to $\delta(v) = 0$ and to v = e. For the notational convenience we denote $\delta(v)$ by δ .

Lemma 2.8. Let δ be the value defined in (9). Then we have

$$v_{min} \ge \frac{1}{1+2\delta}.$$

Proof: First, if $v_{min} \leq 1$, then we have

$$\delta = \frac{1}{2} \| - \nabla \Psi(v) \| = \frac{1}{2} \| v^{-1} - v^p \| \ge \frac{1}{2} | v_{min}^{-1} - v_{min}^p | \ge \frac{1}{2} (v_{min}^{-1} - 1).$$

Thus we have $v_{min} \ge (1+2\delta)^{-1}$. Secondly, if $v_{min} > 1$, then we have $v_{min} > 1 \ge \frac{1}{1+2\delta}$. \Box

In the following lemma we give key properties which are crucial in the analysis of the algorithm.

Lemma 2.9. Kernel function ψ in (6) satisfies the following properties.

- (i) $t\psi''(t) + \psi'(t) > 0, t > 0.$
- (ii) $\psi'''(t) < 0, t > 0,$ (iii) $\psi''(t)\psi'(\beta t) \beta\psi'(t)\psi''(\beta t) > 0, t > 1, \beta > 1.$

Proof: (i): From (8), $t\psi''(t) + \psi'(t) = t(pt^{p-1} + \frac{1}{t^2}) + (t^p - \frac{1}{t}) = (p+1)t^p > 0$, for t > 0. (ii): By (8), it is obvious. (*iii*): By (8), $\psi''(t)\psi'(\beta t) - \beta\psi'(t)\psi''(\beta t) = \frac{t^p(1+p)(\beta^{p+1}-1)}{\beta t^2} > 0$, for $p \in [0,1], t > 1$, $\beta > 1.$

By Lemma 2.9 (i) and Lemma 1 in [14], ψ is exponentially convex. Let $\varrho: [0,\infty) \to [1,\infty)$ be the inverse function of ψ for $t \ge 1$, $\rho: [0,\infty) \to (0,1]$ the inverse function of $-\frac{1}{2}\psi'(t)$ for $t \in (0, 1]$. Then we have the following lemma.

Lemma 2.10. (Example 9 in [5])

(i)
$$(1 + (p+1)s)^{\frac{1}{p+1}} \le \varrho(s) \le 1 + s + \sqrt{s^2 + 2s}, \ s \ge 0.$$

(ii) $\rho(s) \ge \frac{1}{(2s+1)}, \ s > 0.$

Now we obtain a lower bound for δ in terms of the proximity function $\Psi(v)$.

Theorem 2.11. Let δ be the norm-based proximity measure as defined in (9). If $\Psi(v) \geq \tau$ for $\tau \geq 1$, then we have

$$\delta \ge \frac{1}{6} (\Psi(v))^{\frac{p}{p+1}}$$

Proof: By Theorem 4.9 in [1], Lemma 2.10 (i) and $\Psi(v) \ge 1$, we get

$$\begin{split} \delta &\geq \frac{1}{2} \left(\varrho(\Psi(v))^p - \frac{1}{\varrho(\Psi(v))} \right) \geq \frac{1}{2} \left(((p+1)\Psi(v) + 1)^{\frac{p}{p+1}} - \frac{1}{((p+1)\Psi(v) + 1)^{\frac{1}{p+1}}} \right) \\ &= \frac{1}{2} \frac{(p+1)\Psi(v)}{((p+1)\Psi(v) + 1)^{\frac{1}{p+1}}} \geq \frac{(p+1)\Psi(v)}{2(1+2\Psi(v))^{\frac{1}{p+1}}} \geq \frac{(p+1)\Psi(v)}{6\Psi(v)^{\frac{1}{p+1}}} \geq \frac{1}{6} \Psi(v)^{\frac{p}{p+1}}, \end{split}$$

where $p \in [0, 1]. \Box$

where $p \in [0, 1]$.

Note that at the start of outer iteration of the algorithm, just before the update of μ with the factor $1 - \theta$, we have $\Psi(v) \leq \tau$. Due to the update of μ the vector v is divided by the factor $\sqrt{1-\theta}$, with $0 < \theta < 1$, which in general leads to an increase in the value of $\Psi(v)$. By using the following lemma, we obtain an estimate for the effect of a μ -update on the value of $\Psi(v)$.

Lemma 2.12. If t > 1, then $\psi(t) < \frac{1}{2}\psi''(1)(t-1)^2$.

Proof: By using Taylor's Theorem and $\psi(1) = \psi'(1) = 0$,

$$\begin{split} \psi(t) &= \psi(1) + \psi'(1)(t-1) + \frac{1}{2}\psi''(t-1)^2 + \frac{1}{3}\psi'''(\xi)(\xi-1)^3 \\ &= \frac{1}{2}\psi''(t-1)^2 + \frac{1}{3}\psi'''(\xi)(\xi-1)^3, \end{split}$$

where $1 \le \xi \le t$ if t > 1. Since $\psi''' < 0$, we obtain the desired result. Lemma 2.13. If $\Psi(v) \le \tau$, then we have for $0 < \theta < 1$

$$\Psi(\frac{v}{\sqrt{1-\theta}}) \le \frac{(1+p)n}{2(1-\theta)} \left(\theta + \frac{\tau}{n} + \sqrt{\left(\frac{\tau}{n}\right)^2 + \frac{2\tau}{n}}\right)^2.$$

Proof: By the definition of ρ and $\frac{1}{\sqrt{1-\theta}} \ge 1$, $\frac{1}{\sqrt{1-\theta}}\rho\left(\frac{\Psi(v)}{n}\right) \ge 1$. By Theorem 3.2 in [1], Lemma 2.12 (i) with $\psi''(1) = 1 + p$, and Lemma 2.10, we have

$$\begin{split} \Psi(\frac{v}{\sqrt{1-\theta}}) &\leq n\psi\left(\frac{\varrho\left(\frac{\Psi(v)}{n}\right)}{\sqrt{1-\theta}}\right) \leq \frac{(1+p)n}{2}\left(\frac{\varrho\left(\frac{\Psi(v)}{n}\right)}{\sqrt{1-\theta}} - 1\right)^2 \\ &\leq \frac{(1+p)n}{2}\left(\frac{1+\frac{\tau}{n} + \sqrt{\left(\frac{\tau}{n}\right)^2 + \frac{2\tau}{n}} - \sqrt{1-\theta}}{\sqrt{1-\theta}}\right)^2 \\ &\leq \frac{(1+p)n}{2(1-\theta)}\left(\theta + \frac{\tau}{n} + \sqrt{\left(\frac{\tau}{n}\right)^2 + \frac{2\tau}{n}}\right)^2. \end{split}$$

By using $1 - \theta = \frac{\theta}{1 + \sqrt{1 - \theta}} \le \theta$, the last inequality holds.

Define Ψ_0 as the value of $\Psi(v)$ after the μ -update. Then we have

$$\Psi_0 \le \frac{(1+p)n}{2(1-\theta)} \left(\theta + \frac{\tau}{n} + \sqrt{\left(\frac{\tau}{n}\right)^2 + \frac{2\tau}{n}} \right)^2.$$
(10)

For large-update methods with $\tau = O(n)$ and $\theta = O(1)$, we have $\Psi_0 = O(n)$.

3. COMPLEXITY ANALYSIS

In this section we analyze the complexity of the algorithm. Since $P_*(\kappa)$ LCPs are generalization of LO problems, we loose the orthogonality of vectors d_x and d_s . So the analysis is different from LO case([1], [5], [7], [13], [16]). After a damped step for fixed μ we have $x_+ = x + \alpha \Delta x$, $s_+ = s + \alpha \Delta s$. From (3), we have $x_+ = x \left(e + \alpha \frac{\Delta x}{x}\right) = x \left(e + \alpha \frac{d_x}{v}\right) = \frac{x}{v}(v + \alpha d_x)$, $s_+ = s \left(e + \alpha \frac{\Delta s}{s}\right) = s \left(e + \alpha \frac{d_s}{v}\right) = \frac{s}{v}(v + \alpha d_s)$. Thus we

have $v_+^2 = \frac{x_+s_+}{\mu} = (v + \alpha d_x)(v + \alpha d_s)$. Since M is a $P_*(\kappa)$ matrix and $M\Delta x = \Delta s$ from (7), for $\Delta x \in \mathbb{R}^n$ we have

$$(1+4\kappa)\sum_{i\in J_+}\Delta x_i\Delta s_i + \sum_{i\in J_-}\Delta x_i\Delta s_i \ge 0,$$

where $J_+ = \{ i \in J : \Delta x_i \Delta s_i \ge 0 \}$, $J_- = J - J_+$ and Δx_i , Δs_i denote the *i*-th component of the vector Δx and Δs , respectively. Since $d_x d_s = \frac{v^2 \Delta x \Delta s}{xs} = \frac{\Delta x \Delta s}{\mu}$ and $\mu > 0$,

$$(1+4\kappa)\sum_{i\in J_{+}}[d_{x}]_{i}[d_{s}]_{i} + \sum_{i\in J_{-}}[d_{x}]_{i}[d_{s}]_{i} \ge 0,$$
(11)

where $[d_x]_i$ and $[d_s]_i$ denote the *i*-th component of the vector d_x and d_s , respectively. In the following lemma we obtain the bound for $||d_x||$ and $||d_s||$.

Lemma 3.1. (Lemma 4.2 in [3]) $\sum_{i=1}^{n} ([d_x]_i^2 + [d_s]_i^2) \le 4(1+2\kappa)\delta^2, \|d_x\| \le 2\sqrt{1+2\kappa} \delta$ and $\|d_s\| \le 2\sqrt{1+2\kappa} \delta$.

Lemma 3.2. Let δ be the value defined in (9). Then we have

$$\|(x^{-1}\Delta x, s^{-1}\Delta s)\| \le 2\sqrt{1+2\kappa}\,\delta(1+2\delta).$$
(12)

Proof: By using Lemma 3.1 and Lemma 2.8, we have

$$\|(x^{-1}\Delta x, s^{-1}\Delta s)\| = \|(v^{-1}d_x, v^{-1}d_s)\| \le \frac{1}{v_{min}}\sqrt{\|d_x\|^2 + \|d_s\|^2} \le \frac{1}{v_{min}}2\sqrt{1+2\kappa}\delta = 2\sqrt{1+2\kappa}\,\delta(1+2\delta).$$

Define

$$\hat{\alpha} = \frac{1}{2\sqrt{1+2\kappa}\,\delta(1+2\delta)}.\tag{13}$$

Then for $\alpha \in [0, \hat{\alpha}]$, we get $x(\alpha) = x + \alpha \Delta x > 0$ and $s(\alpha) > 0$. Indeed, if $\Delta x > 0$, it is clear. Otherwise, there exists an index set \overline{J} such that $\overline{J} = \{i \in J : \Delta x_i < 0\}$. From (14),

$$\max_{i \in \bar{J}} (-x^{-1}\Delta x)_i \le \| -x^{-1}\Delta x\| \le 2\sqrt{1+2\kappa} \,\,\delta(1+2\delta) = \hat{\alpha}^{-1}.$$

Thus $\min_{i \in \overline{J}} (-x(\Delta x)^{-1})_i \ge \hat{\alpha} \ge \alpha$ and $x_i + \alpha \Delta x_i > 0$ for $i \in \overline{J}$ and $\alpha \in [0, \hat{\alpha}]$. Hence $x + \alpha \Delta x > 0$ for $\alpha \in [0, \hat{\alpha}]$. By the same way, we can get the case $s(\alpha) = s + \alpha \Delta s(\alpha) > 0$ for $\alpha \in [0, \hat{\alpha}]$. Since $\psi(v)$ is exponentially convex, we have

$$\Psi(v_+) = \Psi(\sqrt{(v + \alpha d_x)(v + \alpha d_s)}) \le \frac{1}{2} \left(\Psi(v + \alpha d_x) + \Psi(v + \alpha d_s)\right).$$

For given $\mu > 0$ by letting $f(\alpha)$ the difference of the new and old proximity measures, i.e.

$$f(\alpha) = \Psi(v_+) - \Psi(v),$$

we have $f(\alpha) \leq f_1(\alpha)$, where $f_1(\alpha) := \frac{1}{2}(\Psi(v + \alpha d_x) + \Psi(v + \alpha d_s)) - \Psi(v)$. Note that $f(0) = f_1(0) = 0$. By taking the derivative of $f_1(\alpha)$ with respect to α , we have

$$f_{1}'(\alpha) = \frac{1}{2} \sum_{i=1}^{n} (\psi'(v_{i} + \alpha[d_{x}]_{i})[d_{x}]_{i} + \psi'(v_{i} + \alpha[d_{s}]_{i})[d_{s}]_{i}).$$

Using (5) and the definition of δ , we have

$$f_1'(0) = \frac{1}{2} \nabla \Psi(v)^T (d_x + d_s) = -\frac{1}{2} \nabla \Psi(v)^T \nabla \Psi(v) = -2\delta^2.$$
(14)

By taking the derivative of $f'_1(\alpha)$ with respect to α , we have

$$f_1''(\alpha) = \frac{1}{2} \sum_{i=1}^n (\psi''(v_i + \alpha[d_x]_i)[d_x]_i^2 + \psi''(v_i + \alpha[d_s]_i)[d_s]_i^2).$$
(15)

In the followings we cite some technical lemmas without proof. We obtain the feasible step size α such that the proximity measure is decreasing when we take a new iterate for fixed μ in Lemma 3.5.

Lemma 3.3. (Lemma 4.3 in [3]) $f_1''(\alpha) \le 2(1+2\kappa) \, \delta^2 \psi''(v_{min} - 2\alpha \sqrt{1+2\kappa} \, \delta).$

Lemma 3.4. (Lemma 4.4 in [3]) $f'_1(\alpha) \leq 0$ if α is satisfying

$$-\psi'(v_{min} - 2\alpha\delta\sqrt{1+2\kappa}) + \psi'(v_{min}) \le \frac{2\delta}{\sqrt{1+2\kappa}}.$$
(16)

Lemma 3.5. (Lemma 4.5 in [3]) Let $\rho : [0, \infty) \to (0, 1]$ denote the inverse function of the restriction of $-\frac{1}{2}\psi'(t)$ to the interval (0, 1]. Then the largest step size α that satisfies (16) is given by

$$\bar{\alpha} := \frac{1}{2\delta\sqrt{1+2\kappa}} \left(\rho(\delta) - \rho\left(\left(1 + \frac{1}{\sqrt{1+2\kappa}}\right)\delta\right)\right). \tag{17}$$

In the following lemma we obtain the lower bound for $\bar{\alpha}$ in Lemma 3.5.

Lemma 3.6. Let ρ and $\bar{\alpha}$ be the values as defined in Lemma 3.5. Then we have

$$\bar{\alpha} \ge \frac{1}{256(1+2\kappa)\delta^2}.$$

Proof: By the definition of ρ , $-\psi'(\rho(\delta)) = 2\delta$. By taking the derivative with respect to δ , we get $-\psi''(\rho(\delta))\rho'(\delta) = 2$. Since $\psi'' > 0$, we have $\rho'(\delta) = -\frac{2}{\psi''(\rho(\delta))} < 0$. Hence ρ is monotonically decreasing. By (17) and the fundamental theorem of calculus, we have

$$\begin{split} \bar{\alpha} &= \frac{1}{2\delta\sqrt{1+2\kappa}} (\rho(\delta) - \rho((1+\frac{1}{\sqrt{1+2\kappa}})\delta)) \\ &= \frac{1}{2\delta\sqrt{1+2\kappa}} \int_{(1+\frac{1}{\sqrt{1+2\kappa}})\delta}^{\delta} \rho'(\xi) d\xi = \frac{1}{\delta\sqrt{1+2\kappa}} \int_{\delta}^{(1+\frac{1}{\sqrt{1+2\kappa}})\delta} \frac{d\xi}{\psi''(\rho(\xi))} \end{split}$$

Since $\delta \leq \xi \leq (1 + \frac{1}{\sqrt{1+2\kappa}})\delta$ and ρ is monotonically decreasing, $\rho(\xi) \geq \rho((1 + \frac{1}{\sqrt{1+2\kappa}})\delta)$. Since ψ'' is monotonically decreasing, $\psi''(\rho(\xi)) \leq \psi''(\rho((1 + \frac{1}{\sqrt{1+2\kappa}})\delta))$. Hence $\frac{1}{\psi''(\rho(\xi))} \geq \frac{1}{\psi''(\rho((1 + \frac{1}{\sqrt{1+2\kappa}})\delta))}$. Therefore we have

$$\bar{\alpha} \ge \frac{1}{\delta\sqrt{1+2\kappa}} \frac{1}{\psi''(\rho((1+\frac{1}{\sqrt{1+2\kappa}})\delta))} \int_{\delta}^{(1+\frac{1}{\sqrt{1+2\kappa}})\delta} d\xi = \frac{1}{1+2\kappa} \frac{1}{\psi''(\rho((1+\frac{1}{\sqrt{1+2\kappa}})\delta))}.$$

Let $a := 1 + \frac{1}{\sqrt{1+2\kappa}}$ and $t = \rho(a\delta)$. Note that $a \leq 2$. Then by Lemma 2.10 (*ii*) and the definition of ρ ,

$$1 \ge t = \rho(a\delta) \ge \frac{1}{2a\delta + 1}.$$

Since $p \in [0, 1]$ and $t \le 1$, we have $pt^p \le 1$. Using Theorem 2.11, we have for $p \in [0, 1]$,

$$\begin{split} \bar{\alpha} &\geq \frac{1}{(1+2\kappa)} \frac{1}{\psi''(\rho(a\delta))} = \frac{1}{(1+2\kappa)} \frac{1}{\psi''(t)} = \frac{1}{(1+2\kappa)} \frac{1}{pt^{p-1} + t^{-2}} \\ &= \frac{1}{(1+2\kappa)} \frac{1}{t^{-1}(pt^p + t^{-1})} \geq \frac{1}{(1+2\kappa)} \frac{1}{t^{-1}(1+t^{-1})} \\ &\geq \frac{1}{(1+2\kappa)} \frac{1}{(2a\delta+1)(2a\delta+2)} = \frac{1}{2(1+2\kappa)} \frac{1}{(2a\delta+1)(a\delta+1)} \geq \frac{1}{4(1+2\kappa)} \frac{1}{(a\delta+1)^2} \\ &\geq \frac{1}{4(1+2\kappa)} \frac{1}{(2\delta+6\delta)^2} = \frac{1}{256(1+2\kappa)\delta^2}. \end{split}$$

Define

$$\tilde{\alpha} = \frac{1}{256(1+2\kappa)\delta^2}.$$
(18)

Then using Lemma 3.6 and (13), we have

$$\tilde{\alpha} = \frac{1}{256(1+2\kappa)\delta^2} \le \frac{1}{2(1+2\kappa)} \frac{1}{(2a\delta+1)(a\delta+1)} \le \frac{1}{2\sqrt{1+2\kappa}\,\delta(2\delta+1)} = \hat{\alpha}.$$

By Lemma 3.2, $\tilde{\alpha}$ is strictly feasible step size. Thus we will use $\tilde{\alpha}$ as the default step size in the algorithm.

Lemma 3.7. (Lemma 3.12 in [14]) Let h be a twice differentiable convex function with h(0) = 0, h'(0) < 0 and let h attain its (global) minimum at $t^* > 0$. If h'' is increasing for $t \in [0, t^*]$, then $h(t) \leq \frac{th'(0)}{2}$ for $0 \leq t \leq t^*$.

Lemma 3.8. (Lemma 4.8 in [3]) If the step size α satisfies $\alpha \leq \overline{\alpha}$, then $f(\alpha) \leq -\alpha\delta^2$.

In the following theorem we obtain the upper bound for the difference $f(\alpha)$.

Theorem 3.9. Let $\tilde{\alpha}$ be a step size as defined in (18). Then we have

$$f(\tilde{\alpha}) \le -\frac{1}{256(1+2\kappa)}.\tag{19}$$

Proof: By Lemma 3.6 and (18), $\tilde{\alpha} \leq \bar{\alpha}$. Thus by Lemma 3.8,

$$f(\tilde{\alpha}) \le -\tilde{\alpha}\delta^2 = -\frac{\delta^2}{256(1+2\kappa)\delta^2} = -\frac{1}{256(1+2\kappa)}.$$

We define the value of $\Psi(v)$ after the μ -update as Ψ_0 and the subsequent values in the same outer iteration are denoted as Ψ_k , $k = 1, 2, \cdots$. Let K denote the total number of inner iterations in the outer iteration. Then by the definition of K, we have

$$\Psi_{K-1} > \tau, \ 0 \le \Psi_K \le \tau.$$

In the following lemma, we obtain the upper bound for the total number of inner iterations which we needed to return to the τ -neighborhood again.

Lemma 3.10. Let K be the total number of inner iterations in an outer iteration. Then we have

$$K \le 256(1+2\kappa)\Psi_0,$$

where Ψ_0 denotes the value of $\Psi(v)$ after the μ -update.

Proof: Using Theorem 3.9, we have $f(\tilde{\alpha}) \leq -\frac{1}{256(1+2\kappa)}$. This implies that $\Psi_K - \Psi_{K-1} \leq -\frac{1}{256(1+2\kappa)}$ and $0 \leq \Psi_K \leq \Psi_{K-1} - \frac{1}{256(1+2\kappa)} \leq \Psi_{K-2} - \frac{2}{256(1+2\kappa)} \leq \cdots \leq \Psi_0 - \frac{K}{256(1+2\kappa)}$. Therefore K is bounded above by

$$K \le 256(1+2\kappa)\Psi_0.$$

This completes the proof.

From (10), we have
$$\Psi_0 \leq \frac{(1+p)n}{2(1-\theta)} \left(\theta + \frac{\tau}{n} + \sqrt{\left(\frac{\tau}{n}\right)^2 + \frac{2\tau}{n}}\right)^2$$
 and from Lemma 3.10, we have $K \leq \frac{128(1+2\kappa)(p+1)n}{(1-\theta)} \left(\theta + \frac{\tau}{n} + \sqrt{\left(\frac{\tau}{n}\right)^2 + \frac{2\tau}{n}}\right)^2$. Thus the upper bound for the total number of iterations is obtained by multiplying the number K by the number of outer iterations. If the central path parameter μ has the initial value μ^0 and is updated by multiplying $1 - \theta$, with $0 < \theta < 1$, then after at most $\left[\frac{1}{\theta} \log \frac{n\mu^0}{\epsilon}\right]$ iterations we have $n\mu \leq \epsilon$ ([16]). Thus the total number of iterations is bounded above by $\frac{128(1+2\kappa)(p+1)n}{\theta(1-\theta)} \left(\theta + \frac{\tau}{n} + \sqrt{\left(\frac{\tau}{n}\right)^2 + \frac{2\tau}{n}}\right)^2 \log \frac{n\mu^0}{\epsilon}$. So we obtain the main result as follows.

Theorem 3.11. Let a $P_*(\kappa)$ linear complementarity problem be given, where $\kappa \ge 0$. Assume that a strictly feasible starting point (x^0, s^0) is available with $\Psi(x^0, s^0, \mu^0) \le \tau$ for some

237

 $\mu^0 > 0$. Then the total number of iterations to have solution (x, s) with $x^T s \leq \varepsilon$ is bounded above by

$$\left\lceil \frac{128(1+2\kappa)(p+1)n}{(1-\theta)} \left(\theta + \frac{\tau}{n} + \sqrt{\left(\frac{\tau}{n}\right)^2 + \frac{2\tau}{n}}\right)^2 \right\rceil \left\lceil \frac{1}{\theta} \log \frac{n\mu^0}{\epsilon} \right\rceil.$$

Remark 3.12. For large-update methods with $\tau = O(n)$ and $\theta = \Theta(1)$, the algorithm has $O((1+2\kappa)n\log\frac{n}{\varepsilon})$ iteration complexity. Note that for small-update methods with $\theta = n^{-\frac{1}{2}}$ and $\tau = 1$, we have $O((1+2\kappa)\sqrt{n}\log\frac{n}{\varepsilon})$ which is the best known complexity so far.

REFERENCES

- [1] Y.Q. Bai, M. El Ghami and C. Roos, A Comparative study of kernel functions for primal-dual interior-point algorithms in Linear Optimization, SIAM J. on Optimization 15, 101-128, 2005.
- [2] Y.Q. Bai, J. Guo and C.Roos, A new kernel function yielding the best known iteration bounds for primal-dual interior-point algorithms, Technical Report, Delf University of Technology, 2006.
- [3] G.M. Cho, M.K. Kim and Y.H. Lee, *Complexity of large-update interior point algorithm for* $P_*(\kappa)$ *linear complementarity problems*, Computers and Mathematics with Applications, 53, 948-960, 2007.
- [4] R.W. Cottle, J.S. Pang and R.E. Stone, *The linear complementarity problem*, Academic Press Inc., San Diego, CA, 1992.
- [5] M. El Ghami, New Primal-dual Interior-point Methods Based Kernel Functions, Ph.D thesis, Delft University of Technology, 2005.
- [6] T. Illes and M. Nagy, The Mizuno-Todd-Ye predictor-corrector algorithm for sufficient matrix linear complementarity problem, European Journal of Operational Research, Vol 181, issue 3, 1097-1111, 2007.
- [7] M. Kojima, N. Megiddo, T. Noma and A. Yoshise, A primal-dual interior point algorithm for linear programming, in: N. Megiddo(editor) Progress in Mathematical Programming; Interior Point Related Methods, Springer Verlag, New York, 29-47, 1989.
- [8] M. Kojima, N. Megiddo, T. Noma and A. Yoshise, A Unifided Approach to Interior Point Algorithms for Linear Complementarity Problems, Vol.538, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, 1991.
- [9] M. Kojima, S. Mizuno and A. Yoshise, A polynomial-time algorithm for a class of linear complementarity problems, Mathematical Programming 44, 1-26, 1989.
- [10] M. Kojima, S. Mizuno and A. Yoshise, An $O(\sqrt{nL})$ iteration potential reduction algorithm for linear complementarity problems, Mathematical Programming 50, 331-342, 1991.
- [11] N. Megiddo, Pathways to the optimal set in linear programming, in: N. Megiddo(editor), Progress in Mathematical Programming; Interior point and Related Methods, Springer Verlag, New York, 313-158, 1989.
- [12] J. Miao, A quadratically convergent $O((1 + \kappa)\sqrt{nL})$ -iteration algorithm for the $P_*(\kappa)$ -matrix linear complementarity problem, Mathematical Programming 69, 355-368, 1995.
- [13] J. Peng, C. Roos and T. Terlaky, A new and efficient large-update interior-point method for linear optimization, Journal of computaional Technologies, 6(4):61-80, ISSN 1560-7534, 2001.
- [14] J. Peng, C. Roos and T. Terlaky, *Self-regular functions and new search directions for linear and semidefinite optimization*, Mathematical Programming 93, 129-171, 2002.
- [15] J. Peng, C. Roos, and T. Terlaky, Self-Regularity, A New Paradigm for Primal-Dual Interior-Point Algorithms, Princeton University Press, 2002.
- [16] C. Roos, T. Terlaky and J. Ph. Vial, *Theory and Algorithms for Linear Optimization*, An Interior Approach, John Wiley and Sons, Chichester, UK, 1997.
- [17] S.J. Wright, Primal-dual interior-point methods, SIAM, 1997.