A LARGE-UPDATE INTERIOR POINT ALGORITHM FOR $P_{*}(\kappa)$ LCP BASED ON A NEW KERNEL FUNCTION

You-Young Cho and Gyeong-Mi Сho

Abstract

In this paper we generalize large-update primal-dual interior point methods for linear optimization problems in [2] to the $P_{*}(\kappa)$ linear complementarity problems based on a new kernel function which includes the kernel function in [2] as a special case. The kernel function is neither self-regular nor eligible. Furthermore, we improve the complexity result in [2] from $O\left(\sqrt{n}(\log n)^{2} \log \frac{n \mu_{0}}{\epsilon}\right)$ to $O\left(\sqrt{n}(\log n) \log (\log n) \log \frac{n \mu_{0}}{\epsilon}\right)$.

1. Introduction

In this paper we propose a new large-update interior point algorithm for solving linear complementarity problem(LCP) as follows:

$$
\begin{equation*}
s=M x+q, x s=0, x \geq 0, s \geq 0 \tag{1}
\end{equation*}
$$

where $x, s, q \in \mathbf{R}^{n}, M \in \mathbf{R}^{n \times n}$ is a $P_{*}(\kappa)$ matrix, and $x s$ denotes the componentwise product of the vectors x and s.

Primal-dual interior point method(IPM) is one of the most efficient numerical methods for various optimization problems. Linear complementarity problems(LCPs) have many applications in science, economics, and engineering([5]).

It is generally agreed that the iteration complexity of the algorithm is an appropriate measure for its efficiency $([6])$. Most of polynomial-time interior point algorithms are based on the logarithmic barrier function. Peng et al.([11], [12], [13]) proposed a new variant of interior point methods(IPMs) based on self-regular barrier functions and achieved so far the best known complexity result for large-update methods with a specific self-regular barrier function. Roos et al.([1], [2]) proposed new primal-dual IPMs for linear optimization(LO) problems based on eligible barrier functions and proposed the unified scheme for analyzing the algorithm based on four conditions on the kernel function([2]). Cho et al.([3], [4]) extended the algorithm for LO to $P_{*}(\kappa)$ LCPs.

[^0]Motivated by their works, we introduce a new class of kernel functions which is the generalized form of the ones in [2] and is not eligible. We obtained $\mathcal{O}\left(\frac{(1+2 \kappa)}{r} n^{\frac{1}{1+p}}(\log n)^{1+r} \log \frac{n \mu_{0}}{\epsilon}\right)$ iteration complexity for large-update method. Taking $p=1$ and $r=\frac{1+\epsilon}{\log (\log n)}$, we have $\mathcal{O}\left((1+2 \kappa) \sqrt{n} \log n \log (\log n) \log \frac{n \mu_{0}}{\epsilon}\right)$ iteration complexity for $P_{*}(\kappa)$ LCP which is better than the one in [2].

The paper is organized as follows. In Section 2 we recall the generic IPM and propose some basic concepts for LCP. In Section 3 we introduce a new class of kernel functions and its properties. In Section 4 we derive the complexity result for the algorithm based on a new kernel function.

We will make use of the following notations throughout the paper. \mathbf{R}_{+}^{n} and \mathbf{R}_{++}^{n} denote the set of n-dimensional nonnegative vectors and positive vectors, respectively. For $x \in \mathbf{R}^{n}, x_{\text {min }}$ denotes the smallest component of the vector x. We denote X and S the diagonal matrices from a vector x and s, respectively, i.e. $X=\operatorname{diag}(x)$ and $S=\operatorname{diag}(s)$. e and E denote the n-dimensional vector of ones and the identity matrix, respectively. For $f(t), g(t): \mathbf{R}_{++} \rightarrow \mathbf{R}_{++}$, $f(t)=\mathcal{O}(g(t))$ if $f(t) \leq c_{1} g(t)$ for some positive constant c_{1} and $f(t)=\Theta(g(t))$ if $c_{2} g(t) \leq f(t) \leq c_{3} g(t)$ for some positive constants c_{2} and $c_{3} . I$ denotes the index set, e.g. $I=\{1,2, \cdots, n\}$. log denotes the natural logarithmic function.

2. Preliminaries

In this section, we recall the generic IPM and introduce basic concepts.
Definition 1. [8] Let $\kappa \geq 0 . P_{*}(\kappa)$ is the class of matrices M satisfying

$$
(1+4 \kappa) \sum_{i \in I_{+}(\xi)} \xi_{i}[M \xi]_{i}+\sum_{i \in I_{-}(\xi)} \xi_{i}[M \xi]_{i} \geq 0
$$

where $\xi \in \mathbf{R}^{n},[M \xi]_{i}$ denotes the i-th component of the vector $M \xi$ and

$$
I_{+}(\xi)=\left\{i \in I: \xi_{i}[M \xi]_{i} \geq 0\right\}, I_{-}(\xi)=\left\{i \in I: \xi_{i}[M \xi]_{i}<0\right\} .
$$

Lemma 2.1. [8] If $M \in \mathbf{R}^{n \times n}$ is a $P_{*}(\kappa)$ matrix, then

$$
M^{\prime}=\left(\begin{array}{cc}
-M & E \\
S & X
\end{array}\right)
$$

is a nonsingular matrix for any positive diagonal matrices $X, S \in \mathbf{R}^{n \times n}$.
Corollary 2.2. Let $M \in \mathbf{R}^{n \times n}$ be a $P_{*}(\kappa)$ matrix and $x, s \in \mathbf{R}_{++}^{n}$. Then for all $c \in \mathbf{R}^{n}$ the system

$$
-M \Delta x+\Delta s=0, S \Delta x+X \Delta s=c
$$

has a unique solution $(\Delta x, \Delta s)$.
The basic idea of primal-dual IPMs is to replace the second equation in (1) by the parameterized equation $x s=\mu e, \mu>0$. Now we consider the following system:

$$
\begin{equation*}
s=M x+q, X s=\mu e, x>0, s>0 \tag{2}
\end{equation*}
$$

Without loss of generality, we assume that (1) has a strictly feasible point, i.e., there exists $\left(x^{0}, s^{0}\right)>0$ such that $s^{0}=M x^{0}+q$. For this, the reader refers to [8]. Since M is a $P_{*}(\kappa)$ matrix and (1) is strictly feasible, the system (2) has a unique solution for each $\mu>0$. We denote the solution $(x(\mu), s(\mu))$ for each $\mu>0$. We call it the μ-center. The set of μ-centers $(\mu>0)$ is called the central path of (1). The limit of this central path (as μ goes to zero) exists and since the limit point satisfies (1), it yields an optimal solution for (1) ([8]). IPMs follow this central path approximately and approach the solution of (1) as μ goes to zero.
For given $(x, s):=\left(x^{0}, s^{0}\right)$ by applying Newton method to the system (2) we have the following Newton system:

$$
\begin{equation*}
-M \Delta x+\Delta s=0, S \Delta x+X \Delta s=\mu e-x s \tag{3}
\end{equation*}
$$

By Corollary 2.2, the system (3) has a unique search direction $(\Delta x, \Delta s)$. By taking a step along the search direction $(\Delta x, \Delta s)$, one constructs a new positive iterate $\left(x_{+}, s_{+}\right)$, where

$$
x_{+}=x+\alpha \Delta x, s_{+}=s+\alpha \Delta s
$$

for some $\alpha \geq 0$. To have the motivation of new algorithm we define the following scaled vectors:

$$
\begin{equation*}
v:=\sqrt{\frac{x s}{\mu}}, d:=\sqrt{\frac{x}{s}}, d_{x}:=\frac{v \Delta x}{x}, d_{s}:=\frac{v \Delta s}{s} \tag{4}
\end{equation*}
$$

whose i th components are $\sqrt{x_{i} s_{i} / \mu}, \sqrt{x_{i} / s_{i}}, v_{i}[\Delta x]_{i} / x_{i}$, and $v_{i}[\Delta s]_{i} / s_{i}$, respectively. Using (4), we can rewrite the system (3) as follows:

$$
\begin{equation*}
-\bar{M} d_{x}+d_{s}=0, d_{x}+d_{s}=v^{-1}-v \tag{5}
\end{equation*}
$$

where $\bar{M}:=D M D$ and $D:=\operatorname{diag}(d)$. Note that the right side of the second equation in (5) equals the negative gradient of the logarithmic barrier function $\Psi_{l}(v)$, i.e.,

$$
\begin{equation*}
d_{x}+d_{s}=-\nabla \Psi_{l}(v) \tag{6}
\end{equation*}
$$

where

$$
\Psi_{l}(v):=\sum_{i=1}^{n} \psi_{l}\left(v_{i}\right), \psi_{l}(t)=\frac{t^{2}-1}{2}-\log t, t>0
$$

We call ψ_{l} the kernel function of the logarithmic barrier function $\Psi_{l}(v)$.
The generic interior point algorithm works as follows. Assume that we are given a strictly feasible point (x, s) which is in a τ-neighborhood of the given μ-center. Then we decrease μ to $\mu_{+}:=(1-\theta) \mu$, for some fixed $\theta \in(0,1)$ and solve the Newton system (3) to obtain the unique search direction. The positivity condition of a new iterate is ensured with the right choice of the step size α which is defined by some line search rule. This procedure is repeated until we find a new iterate $\left(x_{+}, s_{+}\right)$that is in a τ-neighborhood of the μ_{+}-center and then we let $\mu:=\mu_{+}$and $(x, s):=\left(x_{+}, s_{+}\right)$. Then μ is again reduced by the
factor $1-\theta$ and we solve the Newton system targeting at the new μ_{+}-center, and so on. This process is repeated until μ is small enough, say until $n \mu<\varepsilon$.

Generic Primal-Dual Algorithm

```
Input:
        a threshold parameter \(\tau>0\);
        an accuracy parameter \(\varepsilon>0\);
        a fixed barrier update parameter \(\theta, 0<\theta<1\);
        \(\left(x^{0}, s^{0}\right)\) and \(\mu^{0}>0\) such that \(\Psi_{l}\left(x^{0}, s^{0}, \mu^{0}\right) \leq \tau\).
begin
        \(x:=x^{0} ; s:=s^{0} ; \mu:=\mu^{0} ;\)
        while \(n \mu \geq \varepsilon\) do
        begin
            \(\mu:=(1-\theta) \mu ;\)
            while \(\Psi_{l}(v)>\tau\) do
            begin
                solve the system (3) for \(\Delta x\) and \(\Delta s\);
                determine a step size \(\alpha\);
                \(x:=x+\alpha \Delta x\);
            \(s:=s+\alpha \Delta s ;\)
            \(v:=\sqrt{\frac{x s}{\mu}} ;\)
            end
        end
end
```

When the barrier update parameter θ is independent of n, we call the algorithm a large-update method.

3. New kernel function

In this section we define a new class of kernel functions and its properties.
Definition 2. The function $\psi: \mathbf{R}_{++} \rightarrow \mathbf{R}_{+}$is called a kernel function if ψ is twice differentiable and satisfies the following conditions:

$$
\text { (a) } \psi^{\prime}(1)=\psi(1)=0,(b) \psi^{\prime \prime}(t)>0, t>0,(c) \lim _{t \rightarrow 0} \psi(t)=\lim _{t \rightarrow \infty} \psi(t)=\infty
$$

Now we define a new class of kernel functions with parameters p and r as follows:

$$
\begin{equation*}
\psi(t):=\frac{t^{p+1}-1}{p+1}+r\left(e^{t^{-\frac{1}{r}}-1}-1\right), 0 \leq p \leq 1,0<r \leq 1, t>0 . \tag{7}
\end{equation*}
$$

Note that $\psi(t)$ includes the kernel function defined in [2] as a special case. For $\psi(t)$ we have the following:

$$
\begin{align*}
& \psi^{\prime}(t)=t^{p}-t^{-\frac{1}{r}-1} e^{t^{-\frac{1}{r}}-1} \\
& \psi^{\prime \prime}(t)=p t^{p-1}+\left(\frac{1}{r}+\left(\frac{1}{r}+1\right) t^{\frac{1}{r}}\right) t^{-\frac{2}{r}-2} e^{t^{-\frac{1}{r}}-1} \\
& \psi^{\prime \prime \prime}(t)=p(p-1) t^{p-2}-\left(\frac{1}{r^{2}}+\frac{3}{r}\left(\frac{1}{r}+1\right) t^{\frac{1}{r}}+\left(\frac{1}{r}+1\right)\left(\frac{1}{r}+2\right) t^{\frac{2}{r}}\right) t^{-\frac{3}{r}-3} e^{t^{-\frac{1}{r}}-1} \tag{8}
\end{align*}
$$

In this paper, we replace the function $\Psi_{l}(v)$ in (6) with the function $\Psi(v)$ as follows:

$$
\begin{equation*}
d_{x}+d_{s}=-\nabla \Psi(v) \tag{9}
\end{equation*}
$$

where $\Psi(v)=\sum_{i=1}^{n} \psi\left(v_{i}\right)$ and $\psi(t)$ is defined in (7). Hence the new search direction $(\Delta x, \Delta s)$ is obtained by solving the following modified Newton-system:

$$
\begin{equation*}
-M \Delta x+\Delta s=0, S \Delta x+X \Delta s=-\mu v \nabla \Psi(v) \tag{10}
\end{equation*}
$$

Since $\Psi(v)$ is strictly convex and minimal at $v=e$, we have

$$
\Psi(v)=0 \Leftrightarrow v=e \Leftrightarrow x=x(\mu), s=s(\mu)
$$

We use $\Psi(v)$ as the proximity function to measure the distance between the current iterate and the μ-center. Also, we define the norm-based proximity measure $\delta(v)$ as follows:

$$
\begin{equation*}
\delta(v):=\frac{1}{2}\|\nabla \Psi(v)\|=\frac{1}{2}\left\|d_{x}+d_{s}\right\| . \tag{11}
\end{equation*}
$$

In the following we give properties of $\psi(t)$ which are essential to the complexity analysis.

Lemma 3.1. Let $\psi(t)$ be as defined in (7). Then we have the following:
(i) $\psi(t)$ is exponentially convex, $t>0$.
(ii) $\psi^{\prime \prime}(t)$ is monotonically decreasing, $t>0$.

Proof. For (i, by Lemma 2.1.2 in [13], it suffices to show the function $\psi(t)$ satisfies $t \psi^{\prime \prime}(t)+\psi^{\prime}(t) \geq 0$ for all $t>0$. Using (8), we have

$$
t \psi^{\prime \prime}(t)+\psi^{\prime}(t)=(p+1) t^{p}+\frac{1}{r} t^{-\frac{2}{r}-1} e^{t^{-\frac{1}{r}}-1}+\frac{1}{r} t^{-\frac{1}{r}-1} e^{t^{-\frac{1}{r}}-1} \geq 0, t>0 .
$$

For $(i i)$, from (8), $\psi^{\prime \prime \prime}(t)<0$. This completes the proof.
Remark 1. Recall that the function $\psi: \mathbf{R}_{++} \rightarrow \mathbf{R}_{+}$is eligible if ψ is three times differentiable and satisfies the following conditions([2]):
(a) $t \psi^{\prime \prime}(t)+\psi^{\prime}(t)>0, t<1$,
(b) $t \psi^{\prime \prime}(t)-\psi^{\prime}(t)>0, t>1$,
(c) $\psi^{\prime \prime \prime}(t)<0, t>0$,
(d) $2 \psi^{\prime \prime}(t)^{2}-\psi^{\prime}(t) \psi^{\prime \prime \prime}(t)>0, t<1$.

Using (8), we have

$$
t \psi^{\prime \prime}(t)-\psi^{\prime}(t)=(p-1) t^{p}+\frac{1}{r} t^{-\frac{2}{r}-1} e^{t^{-\frac{1}{r}}-1}+\left(\frac{1}{r}+2\right) t^{-\frac{1}{r}-1} e^{t^{-\frac{1}{r}}-1}
$$

Since

$$
t \psi^{\prime \prime}(t)-\psi^{\prime}(t)<-7<0 \text { for } p=\frac{1}{2}, r=\frac{1}{4}, t=2^{8}
$$

condition (b) is not satisfied. Hence $\psi(t)$ is not eligible. Note that the kernel function in [2] is eligible.

Lemma 3.2. For $\psi(t)$ and $p \in[0,1]$, we have

$$
\frac{1}{p+1} \sum_{i=1}^{n} v_{i}^{p+1} \leq \Psi(v)+\frac{(p r+r+1) n}{p+1}
$$

Proof. Since $r e^{t^{-\frac{1}{r}}-1}>0$, we have

$$
\psi(t)=\frac{t^{p+1}}{p+1}-\frac{1}{p+1}+r e^{t^{-\frac{1}{r}}-1}-r \geq \frac{t^{p+1}}{p+1}-\frac{1}{p+1}-r
$$

So we have $\frac{t^{p+1}}{p+1} \leq \psi(t)+\frac{p r+r+1}{p+1}$. Hence we have

$$
\frac{1}{p+1} \sum_{i=1}^{n} v_{i}^{p+1} \leq \Psi(v)+\frac{(p r+r+1) n}{p+1}
$$

This completes the proof.
Define $\psi_{b}(t):=r\left(e^{t^{-\frac{1}{r}}-1}-1\right)$. Then we have $\psi(t):=\frac{t^{p+1}-1}{p+1}+\psi_{b}(t)$. Since $\psi_{b}^{\prime}(t)=-t^{-\frac{1}{r}-1} e^{t^{-\frac{1}{r}}-1}<0, \psi_{b}(t)$ is monotonically decreasing in t.
Lemma 3.3. Let $\beta \geq 1$. Then $\psi(\beta t) \leq \psi(t)+\frac{t^{p+1}}{p+1}\left(\beta^{p+1}-1\right)$.
Proof. Since $\psi_{b}(t)$ is monotonically decreasing in $t, \psi_{b}(\beta t)-\psi_{b}(t) \leq 0$ for $\beta \geq 1$. Hence we have

$$
\begin{aligned}
\psi(\beta t) & =\frac{(\beta t)^{p+1}-1}{p+1}+\psi_{b}(\beta t) \\
& =\frac{t^{p+1}-1}{p+1}+\psi_{b}(t)+\frac{1}{p+1}\left(\beta^{p+1} t^{p+1}-t^{p+1}\right)+\psi_{b}(\beta t)-\psi_{b}(t) \\
& =\psi(t)+\frac{t^{p+1}}{p+1}\left(\beta^{p+1}-1\right)+\psi_{b}(\beta t)-\psi_{b}(t) \\
& \leq \psi(t)+\frac{t^{p+1}}{p+1}\left(\beta^{p+1}-1\right)
\end{aligned}
$$

This completes the proof.
In the following we obtain an estimate for the effect of a μ-update on the value of $\Psi(v)$.

Theorem 3.4. Let $0 \leq \theta<1$ and $v_{+}=\frac{v}{\sqrt{1-\theta}}$. Then we have

$$
\Psi\left(v_{+}\right) \leq \Psi(v)+\frac{\theta}{(1-\theta)^{\frac{1+p}{2}}}\left(\Psi(v)+\frac{(p r+r+1) n}{p+1}\right) .
$$

Proof. Using Lemma 3.3 with $\beta=\frac{1}{\sqrt{1-\theta}}$ and Lemma 3.2, we have

$$
\begin{aligned}
\Psi\left(v_{+}\right) & =\Psi(\beta v)=\sum_{i=1}^{n} \psi\left(\beta v_{i}\right) \leq \sum_{i=1}^{n}\left(\psi\left(v_{i}\right)+\frac{1}{p+1}\left(\beta^{p+1}-1\right) v_{i}^{p+1}\right) \\
& =\Psi(v)+\left(\frac{1}{(1-\theta)^{\frac{1+p}{2}}}-1\right) \frac{1}{p+1} \sum_{i=1}^{n} v_{i}^{p+1} \\
& \leq \Psi(v)+\frac{1-(1-\theta)^{\frac{1+p}{2}}}{(1-\theta)^{\frac{1+p}{2}}}\left(\Psi(v)+\frac{(p r+r+1) n}{p+1}\right) .
\end{aligned}
$$

Since $1-(1-\theta)^{\frac{1+p}{2}} \leq \theta$ for $0 \leq \theta<1$,

$$
\Psi\left(v_{+}\right) \leq \Psi(v)+\frac{\theta}{(1-\theta)^{\frac{1+p}{2}}}\left(\Psi(v)+\frac{(p r+r+1) n}{p+1}\right) .
$$

This completes the proof.
Note that at the start of outer iteration of the algorithm, i.e., just before the update of μ with the factor $1-\theta$, we have $\Psi(v) \leq \tau$. During the inner iteration we have

$$
\begin{aligned}
\Psi\left(v_{+}\right) & \leq \Psi(v)+\frac{\theta}{(1-\theta)^{\frac{1+p}{2}}}\left(\Psi(v)+\frac{(p r+r+1) n}{p+1}\right) \\
& \leq \tau+\frac{\theta}{(1-\theta)^{\frac{1+p}{2}}}\left(\tau+\frac{(p r+r+1) n}{p+1}\right)
\end{aligned}
$$

Each subsequent inner iteration will rise to a decrease of the value of $\Psi(v)$. Denote

$$
\begin{equation*}
\tilde{\Psi}_{0}:=\tau+\frac{\theta}{(1-\theta)^{\frac{1+p}{2}}}\left(\tau+\frac{(p r+r+1) n}{p+1}\right) \tag{12}
\end{equation*}
$$

Define Ψ_{0} the value of $\Psi(v)$ after the μ-update. Then $\Psi_{0} \leq \tilde{\Psi}_{0}$.
Lemma 3.5. Define $\varrho:[0, \infty) \rightarrow[1, \infty)$ be the inverse function of $\psi(t)$ for $t \geq 1$. For $0 \leq p \leq 1$ and $u \geq 0$ we have

$$
\varrho(u) \geq(1+(p+1) u)^{\frac{1}{1+p}}
$$

Proof. Let $u=\psi(t), t \geq 1$. Since $\psi_{b}(t)$ is monotonically decreasing in t and $\psi_{b}(1)=0, \psi_{b}(t)<0$ for $t>1$. Hence $u=\psi(t)=\frac{t^{p+1}-1}{p+1}+\psi_{b}(t) \leq \frac{t^{p+1}-1}{p+1}$, $t \geq 1$. This implies $(p+1) u+1 \leq t^{p+1}$. By the definition of $\varrho, \varrho(u)=t \geq$ $(1+(p+1) u)^{\frac{1}{1+p}}$. This completes the proof.

From Lemma 3.1 (ii), we cite the following lemma in [2] without proof.

Lemma 3.6. (Theorem 4.9 in [2]) Let $\delta(v)$ be as defined in (11). Then we have

$$
\delta(v) \geq \frac{1}{2} \psi^{\prime}(\varrho(\Psi(v)))
$$

For notational convenience we denote $\delta:=\delta(v)$ and $\Psi:=\Psi(v)$.
Lemma 3.7. Let δ be as defined in (11). Then for all $\Psi \geq 1$ and $0 \leq p \leq 1$ we have

$$
\delta \geq \frac{1}{4}((p+1) \Psi)^{\frac{p}{1+p}}
$$

Proof. By Lemma 3.6, Lemma 3.5, and $\psi^{\prime \prime}(t)>0$,

$$
\begin{aligned}
\delta & \geq \frac{1}{2} \psi^{\prime}(\varrho(\Psi)) \geq \frac{1}{2} \psi^{\prime}\left((1+(p+1) \Psi)^{\frac{1}{1+p}}\right) \\
& =\frac{1}{2}\left((1+(p+1) \Psi)^{\frac{p}{1+p}}-e^{(1+(p+1) \Psi)^{-\frac{1}{r(1+p)}}-1} \frac{1}{(1+(p+1) \Psi)^{\frac{1+r}{r(1+p)}}}\right) \\
& \geq \frac{1}{2}\left((1+(p+1) \Psi)^{\frac{p}{1+p}}-\frac{1}{(1+(p+1) \Psi)^{\frac{1+r}{r(1+p)}}}\right) \\
& \geq \frac{1}{2}\left((1+(p+1) \Psi)^{\frac{p}{1+p}}-\frac{1}{(1+(p+1) \Psi)^{\frac{1}{1+p}}}\right) \\
& =\frac{1}{2} \frac{(p+1) \Psi}{(1+(p+1) \Psi)^{\frac{1}{1+p}}} \geq \frac{1}{4}((p+1) \Psi)^{\frac{p}{1+p}},
\end{aligned}
$$

where the third inequality is satisfied from $e^{(1+(p+1) \Psi)^{-\frac{1}{r(1+p)}}-1} \leq 1$ and the last inequality from the fact $1 \leq(p+1) \Psi$. This completes the proof.

4. Complexity result

In this section we compute a feasible step size and the decrease of the proximity function during an inner iteration and give the complexity result of the algorithm. For fixed μ if we take a step size α, then we have new iterates $x_{+}=x+\alpha \Delta x, s_{+}=s+\alpha \Delta s$. Using (4), we have

$$
x_{+}=x\left(e+\alpha \frac{\Delta x}{x}\right)=x\left(e+\alpha \frac{d_{x}}{v}\right)=\frac{x}{v}\left(v+\alpha d_{x}\right)
$$

and

$$
s_{+}=s\left(e+\alpha \frac{\Delta s}{s}\right)=s\left(e+\alpha \frac{d_{s}}{v}\right)=\frac{s}{v}\left(v+\alpha d_{s}\right)
$$

Thus we have

$$
v_{+}=\sqrt{\frac{x_{+} s_{+}}{\mu}}=\sqrt{\left(v+\alpha d_{x}\right)\left(v+\alpha d_{s}\right)} .
$$

Define for $\alpha>0, f(\alpha)=\Psi\left(v_{+}\right)-\Psi(v)$. Then $f(\alpha)$ is the difference between proximities of a new iterate and a current iterate for fixed μ. Using Lemma 3.1 (i), we have

$$
\Psi\left(v_{+}\right)=\Psi\left(\sqrt{\left(v+\alpha d_{x}\right)\left(v+\alpha d_{s}\right)}\right) \leq \frac{1}{2}\left(\Psi\left(v+\alpha d_{x}\right)+\Psi\left(v+\alpha d_{s}\right)\right)
$$

Hence we have $f(\alpha) \leq f_{1}(\alpha)$, where

$$
f_{1}(\alpha):=\frac{1}{2}\left(\Psi\left(v+\alpha d_{x}\right)+\Psi\left(v+\alpha d_{s}\right)\right)-\Psi(v)
$$

We have $f(0)=f_{1}(0)=0$. Taking the derivative of $f_{1}(\alpha)$ with respect to α, we have

$$
f_{1}^{\prime}(\alpha)=\frac{1}{2} \sum_{i=1}^{n}\left(\psi^{\prime}\left(v_{i}+\alpha\left[d_{x}\right]_{i}\right)\left[d_{x}\right]_{i}+\psi^{\prime}\left(v_{i}+\alpha\left[d_{s}\right]_{i}\right)\left[d_{s}\right]_{i}\right),
$$

where $\left[d_{x}\right]_{i}$ and $\left[d_{s}\right]_{i}$ denote the i-th components of the vectors d_{x} and d_{s}, respectively. Using (9) and (11), we have

$$
f_{1}^{\prime}(0)=\frac{1}{2} \nabla \Psi(v)^{T}\left(d_{x}+d_{s}\right)=-\frac{1}{2} \nabla \Psi(v)^{T} \nabla \Psi(v)=-2 \delta(v)^{2} .
$$

Differentiating $f_{1}^{\prime}(\alpha)$ with respect to α, we have

$$
f_{1}^{\prime \prime}(\alpha)=\frac{1}{2} \sum_{i=1}^{n}\left(\psi^{\prime \prime}\left(v_{i}+\alpha\left[d_{x}\right]_{i}\right)\left[d_{x}\right]_{i}^{2}+\psi^{\prime \prime}\left(v_{i}+\alpha\left[d_{s}\right]_{i}\right)\left[d_{s}\right]_{i}^{2}\right)
$$

Since $f_{1}^{\prime \prime}(\alpha)>0, f_{1}(\alpha)$ is strictly convex in α unless $d_{x}=d_{s}=0$. Since M is a $P_{*}(\kappa)$ matrix and $M \Delta x=\Delta s$ from (10), for $\Delta x \in \mathbf{R}^{n}$,

$$
(1+4 \kappa) \sum_{i \in I_{+}}[\Delta x]_{i}[\Delta s]_{i}+\sum_{i \in I_{-}}[\Delta x]_{i}[\Delta s]_{i} \geq 0
$$

where $I_{+}=\left\{i \in I:[\Delta x]_{i}[\Delta s]_{i} \geq 0\right\}, I_{-}=I-I_{+}$. Since $d_{x} d_{s}=\frac{v^{2} \Delta x \Delta s}{x s}=$ $\frac{\Delta x \Delta s}{\mu}$ and $\mu>0$, we have

$$
(1+4 \kappa) \sum_{i \in I_{+}}\left[d_{x}\right]_{i}\left[d_{s}\right]_{i}+\sum_{i \in I_{-}}\left[d_{x}\right]_{i}\left[d_{s}\right]_{i} \geq 0
$$

For convenience we denote $\sigma_{+}:=\sum_{i \in I_{+}}\left[d_{x}\right]_{i}\left[d_{s}\right]_{i}$ and $\sigma_{-}:=-\sum_{i \in I_{-}}\left[d_{x}\right]_{i}\left[d_{s}\right]_{i}$. In the following we cite some lemmas in [4] without proof.

Lemma 4.1. (Modification of Lemma 4.1 in [4]) $\sigma_{+} \leq \delta^{2}$ and $\sigma_{-} \leq(1+4 \kappa) \delta^{2}$.
Lemma 4.2. (Modification of Lemma 4.2 in [4]) $\sum_{i=1}^{n}\left(\left[d_{x}\right]_{i}^{2}+\left[d_{s}\right]_{i}^{2}\right) \leq 4(1+$ $2 \kappa) \delta^{2},\left\|d_{x}\right\| \leq 2 \delta \sqrt{1+2 \kappa}$, and $\left\|d_{s}\right\| \leq 2 \delta \sqrt{1+2 \kappa}$.
Lemma 4.3. (Modification of lemma 4.3 in [4]) $f_{1}^{\prime \prime}(\alpha) \leq 2(1+2 \kappa) \delta^{2} \psi^{\prime \prime}\left(v_{\text {min }}-\right.$ $2 \alpha \delta \sqrt{1+2 \kappa})$.

Lemma 4.4. (Modification of lemma 4.4 in [4]) $f_{1}^{\prime}(\alpha) \leq 0$ if α is satisfying

$$
\begin{equation*}
-\psi^{\prime}\left(v_{\min }-2 \alpha \delta \sqrt{1+2 \kappa}\right)+\psi^{\prime}\left(v_{\min }\right) \leq \frac{2 \delta}{\sqrt{1+2 \kappa}} \tag{13}
\end{equation*}
$$

Lemma 4.5. (Modification of lemma 4.5 in [4]) Define $\rho:[0, \infty) \rightarrow(0,1]$ be the inverse function of $-\frac{1}{2} \psi^{\prime}(t)$ for $0<t \leq 1$ and $a:=1+\frac{1}{\sqrt{1+2 \kappa}}$. Then the largest step size α satisfying (13) is given by

$$
\hat{\alpha}:=\frac{1}{2 \delta \sqrt{1+2 \kappa}}(\rho(\delta)-\rho(a \delta)) .
$$

Lemma 4.6. (Modification of lemma 4.6 in [4]) Let ρ and $\hat{\alpha}$ be as defined in Lemma 4.5. Then

$$
\hat{\alpha} \geq \frac{1}{(1+2 \kappa) \psi^{\prime \prime}(\rho(a \delta))} .
$$

Define

$$
\begin{equation*}
\bar{\alpha}:=\frac{1}{(1+2 \kappa) \psi^{\prime \prime}(\rho(a \delta))} . \tag{14}
\end{equation*}
$$

Then we have $\bar{\alpha} \leq \hat{\alpha}$.
Lemma 4.7. Let $\bar{\alpha}$ be as defined in (14). Then for $a=1+\frac{1}{\sqrt{1+2 \kappa}}$ and $\kappa \geq 0$, we have

$$
\bar{\alpha} \geq \frac{1}{(1+2 \kappa)\left(p+(2 a \delta+1)\left(\frac{2}{r}+1\right)(1+\log (2 a \delta+1))^{1+r}\right)}
$$

Proof. Using the definition of ρ, we have $-\frac{1}{2} \psi^{\prime}(\rho(a \delta))=a \delta$. Let $z=\rho(a \delta)$. Then $-\psi^{\prime}(z)=2 a \delta$ and $0<z \leq 1$. From (8), we have $-z^{p}+z^{-\frac{1}{r}-1} e^{z^{-\frac{1}{r}}-1}=$ $2 a \delta$. Then for $0<z \leq 1$,

$$
\begin{equation*}
z^{-\frac{1}{r}-1} e^{z^{-\frac{1}{r}}-1}=2 a \delta+z^{p} \leq 2 a \delta+1 \tag{15}
\end{equation*}
$$

By taking the natural logarithmic function on both sides of (15), we have

$$
\begin{equation*}
z^{-\frac{1}{r}}-1-\left(\frac{1}{r}+1\right) \log z \leq \log (2 a \delta+1) \tag{16}
\end{equation*}
$$

Using (16) and $0<z \leq 1$, we obtain

$$
z^{-\frac{1}{r}} \leq 1+\log (2 a \delta+1)+\left(\frac{1}{r}+1\right) \log z \leq 1+\log (2 a \delta+1)
$$

This implies

$$
\begin{align*}
& z^{p-1} \leq(1+\log (2 a \delta+1))^{r(1-p)} \leq(1+\log (2 a \delta+1))^{1+r} \\
& z^{-1} \leq(1+\log (2 a \delta+1))^{r} \leq(1+\log (2 a \delta+1))^{1+r} \tag{17}\\
& z^{-\frac{1}{r}-1} \leq(1+\log (2 a \delta+1))^{1+r}
\end{align*}
$$

From (14), we have for $0<z \leq 1$ and $0 \leq p \leq 1$,

$$
\begin{aligned}
\bar{\alpha} & =\frac{1}{(1+2 \kappa) \psi^{\prime \prime}(\rho(a \delta))}=\frac{1}{(1+2 \kappa) \psi^{\prime \prime}(z)} \\
& =\frac{1}{(1+2 \kappa)\left(p z^{p-1}+\frac{1}{r} z^{-\frac{2}{r}-2} e^{z^{-\frac{1}{r}}-1}+\left(\frac{1}{r}+1\right) z^{-\frac{1}{r}-2} e^{z^{-\frac{1}{r}}-1}\right)} \\
& \geq \frac{1}{(1+2 \kappa)\left(p z^{p-1}+\frac{1}{r}(2 a \delta+1) z^{-\frac{1}{r}-1}+\left(\frac{1}{r}+1\right)(2 a \delta+1) z^{-1}\right)} \\
& =\frac{1}{(1+2 \kappa)\left(p z^{p-1}+(2 a \delta+1)\left(\frac{1}{r} z^{-\frac{1}{r}-1}+\left(\frac{1}{r}+1\right) z^{-1}\right)\right)} \\
& \geq \frac{1}{(1+2 \kappa)\left(p+(2 a \delta+1)\left(\frac{2}{r}+1\right)\right)(1+\log (2 a \delta+1))^{1+r}}
\end{aligned}
$$

where the first inequality follows from (15) and the last inequality from (17). This proves the lemma.

Define

$$
\begin{equation*}
\tilde{\alpha}=\frac{1}{(1+2 \kappa)\left(p+(2 a \delta+1)\left(\frac{2}{r}+1\right)\right)(1+\log (2 a \delta+1))^{1+r}} . \tag{18}
\end{equation*}
$$

Note that $\tilde{\alpha} \leq \bar{\alpha}$. We will use $\tilde{\alpha}$ as the default step size.
Lemma 4.8. (Lemma 1.3.3 in [13]) Suppose that $h(t)$ is a twice differentiable convex function with $h(0)=0$ and $h^{\prime}(0)<0$ and $h(t)$ attains its global minimum at $t^{*}>0$ and $h^{\prime \prime}(t)$ is increasing with respect to t. Then for any $t \in\left[0, t^{*}\right]$,

$$
h(t) \leq \frac{t h^{\prime}(0)}{2} .
$$

Lemma 4.9. (Modification of lemma 4.8 in [4]) If the step size α is such that $\alpha \leq \bar{\alpha}$, then

$$
f(\alpha) \leq-\alpha \delta^{2}
$$

In our algorithm we assume that $\tau \geq 1$. Using Lemma 3.7 and the fact $\Psi \geq \tau$, we have

$$
\begin{equation*}
\delta \geq \frac{1}{4}((p+1) \Psi)^{\frac{p}{1+p}} \geq \frac{1}{4} \tag{19}
\end{equation*}
$$

Lemma 4.10. For $0<r \leq 1$ the function

$$
g(\delta)=-\frac{\delta}{(1+\log (2 a \delta+1))^{1+r}}
$$

is monotonically decreasing in δ.

Proof. It suffices to show that the function $-g(\delta)$ is monotonically increasing in δ. If we differentiate $-g(\delta)$ with respect to δ, we have

$$
-g^{\prime}(\delta)=\frac{(2 a \delta+1)(1+\log (2 a \delta+1))^{1+r}-2 a \delta(1+r)(1+\log (2 a \delta+1))^{r}}{(2 a \delta+1)(1+\log (2 a \delta+1))^{2(1+r)}}
$$

Since the denominator is strictly positive, it is enough to show that numerator is positive. The numerator is

$$
\begin{aligned}
& (2 a \delta+1)(1+\log (2 a \delta+1))^{1+r}-2 a \delta(1+r)(1+\log (2 a \delta+1))^{r} \\
= & (1+\log (2 a \delta+1))^{r}((1+\log (2 a \delta+1))(2 a \delta+1)-2 a \delta(1+r)) \\
= & (1+\log (2 a \delta+1))^{r}(1+(2 a \delta+1) \log (2 a \delta+1)-2 a \delta r) .
\end{aligned}
$$

Let $\tilde{g}(\delta):=1+(2 a \delta+1) \log (2 a \delta+1)-2 a \delta r$. Then $\tilde{g}^{\prime}(\delta)=2 a \log (2 a \delta+1)+$ $2 a-2 a r$. From $1<a \leq 2$ and (19), we have $\tilde{g}^{\prime}(\delta)>0$. Since $\tilde{g}\left(\frac{1}{4}\right)>0, \tilde{g}(\delta)>0$ for $\delta \geq \frac{1}{4}$. Hence, $-g(\delta)$ is monotonically increasing in δ. This completes the proof.
Theorem 4.11. Let $\tilde{\alpha}$ be as defined in (18). Then

$$
f(\tilde{\alpha}) \leq-\frac{((p+1) \Psi)^{\frac{p}{1+p}}}{16(1+2 \kappa)\left(p+\frac{4}{r}+2\right)\left(1+\log \left(\frac{a}{2}\left((p+1) \Psi_{0}\right)^{\frac{p}{1+p}}+1\right)\right)^{1+r}}
$$

Proof. Using (18) and Lemma 4.9, we have

$$
\begin{aligned}
f(\tilde{\alpha}) & \leq-\frac{\delta^{2}}{(1+2 \kappa)\left(p+(2 a \delta+1)\left(\frac{2}{r}+1\right)\right)(1+\log (2 a \delta+1))^{1+r}} \\
& \leq-\frac{\delta^{2}}{(1+2 \kappa)\left(4 p \delta+\delta(2 a+4)\left(\frac{2}{r}+1\right)\right)(1+\log (2 a \delta+1))^{1+r}} \\
& =-\frac{\delta}{2(1+2 \kappa)\left(2 p+\frac{2 a}{r}+\frac{4}{r}+a+2\right)(1+\log (2 a \delta+1))^{1+r}} \\
& \leq-\frac{\delta}{4(1+2 \kappa)\left(p+\frac{4}{r}+2\right)(1+\log (2 a \delta+1))^{1+r}} \\
& \leq-\frac{\frac{1}{4}((p+1) \Psi)^{\frac{p}{1+p}}}{4(1+2 \kappa)\left(p+\frac{4}{r}+2\right)\left(1+\log \left(\frac{a}{2}((p+1) \Psi)^{\frac{p}{1+p}}+1\right)\right)^{1+r}} \\
& =-\frac{((p+1) \Psi)^{\frac{p}{1+p}}}{16(1+2 \kappa)\left(p+\frac{4}{r}+2\right)\left(1+\log \left(\frac{a}{2}((p+1) \Psi)^{\frac{p}{1+p}}+1\right)\right)^{1+r}} \\
& \leq-\frac{((p+1) \Psi)^{\frac{p}{1+p}}}{16(1+2 \kappa)\left(p+\frac{4}{r}+2\right)\left(1+\log \left(\frac{a}{2}\left((p+1) \Psi_{0}\right)^{\frac{p}{1+p}}+1\right)\right)^{1+r}},
\end{aligned}
$$

where the second inequality is satisfied from (19), third inequality from $1<$ $a \leq 2$, the fourth inequality from Lemma 3.7 and Lemma 4.10, and the last inequality from the definition of Ψ_{0}. This completes the proof.

Lemma 4.12. (Lemma 1.3.2 in [13]) Let $t_{0}, t_{1}, \cdots, t_{J}$ be a sequence of positive numbers such that

$$
t_{j+1} \leq t_{j}-\gamma t_{j}^{1-\lambda}, j=0,1, \cdots, J-1
$$

where $\gamma>0$ and $0<\lambda \leq 1$. Then $J \leq\left\lfloor\frac{t_{0}^{\lambda}}{\gamma \lambda}\right\rfloor$.
We define the value of $\Psi(v)$ after the μ-update as Ψ_{0} and the subsequent values in the same outer iteration $\Psi_{k}, k=1,2, \cdots$. Let K denote the total number of inner iterations in the outer iteration. Then we have

$$
\Psi_{K-1}>\tau, 0 \leq \Psi_{K} \leq \tau
$$

Lemma 4.13. Let $\tilde{\Psi}_{0}$ be as defined in (12) and K be the total number of inner iterations in the outer iteration. Then we have

$$
K \leq 16(1+2 \kappa)\left(p+\frac{4}{r}+2\right)(p+1)^{\frac{1}{1+p}}\left(1+\log \left((p+1) \tilde{\Psi}_{0}\right)\right)^{1+r} \tilde{\Psi}_{0}^{\frac{1}{1+p}}
$$

Proof. By Theorem 4.11 with $\gamma=\frac{(p+1)^{\frac{p}{1+p}}}{16(1+2 \kappa)\left(p+\frac{4}{r}+2\right)\left(1+\log \left(\frac{a}{2}\left((p+1) \Psi_{0}\right)^{\frac{p}{1+p}}+1\right)\right)^{1+r}}$
and $\lambda=\frac{1}{1+p}$, we have

$$
K \leq \frac{16(1+2 \kappa)\left(p+\frac{4}{r}+2\right)\left(1+\log \left(\frac{a}{2}\left((p+1) \Psi_{0}\right)^{\frac{p}{1+p}}+1\right)\right)^{1+r}}{(p+1)^{\frac{p}{1+p}}}(p+1) \Psi_{0}^{\frac{1}{1+p}} .
$$

Since $\Psi_{0} \leq \tilde{\Psi}_{0}$ and $1<a \leq 2$, we have the result.
Theorem 4.14. Let a $P_{*}(\kappa) L C P$ be given and $\tau \geq 1$. Then the total number of iterations to have an approximate solution with $n \mu<\epsilon$ is bounded by

$$
\left\lceil 16(1+2 \kappa)\left(p+\frac{4}{r}+2\right)(p+1)^{\frac{1}{1+p}}\left(1+\log \left((p+1) \tilde{\Psi}_{0}\right)\right)^{1+r} \tilde{\Psi}_{0}^{\frac{1}{1+p}}\right\rceil \cdot\left\lceil\frac{1}{\theta} \log \frac{n \mu_{0}}{\epsilon}\right\rceil
$$

where $\epsilon>0$ is the desired accuracy, $\mu_{0}>0$ is given, and $\theta, 0<\theta<1$, is the given barrier update parameter.

Proof. If the central path parameter μ has the initial value $\mu_{0}>0$ and is updated by multiplying $1-\theta$ with $0<\theta<1$, then after at most

$$
\left\lceil\frac{1}{\theta} \log \frac{n \mu_{0}}{\epsilon}\right\rceil
$$

iterations we have $n \mu<\epsilon([14])$. For the total number of iterations, we multiply the number of inner iterations by that of outer iterations. i.e.,
$\left\lceil 16(1+2 \kappa)\left(p+\frac{4}{r}+2\right)(p+1)^{\frac{1}{1+p}}\left(1+\log \left((p+1) \tilde{\Psi}_{0}\right)\right)^{1+r} \tilde{\Psi}_{0}^{\frac{1}{1+p}}\right\rceil \cdot\left\lceil\frac{1}{\theta} \log \frac{n \mu_{0}}{\epsilon}\right\rceil$.
This completes the proof.
Remark 2. Taking $\tau=\mathcal{O}(n)$ and $\theta=\Theta(1)$, the large-update algorithm has

$$
\mathcal{O}\left(\frac{(1+2 \kappa)}{r} n^{\frac{1}{1+p}}(\log n)^{1+r} \log \frac{n \mu_{0}}{\epsilon}\right)
$$

iteration complexity. In particular, for $r=\frac{1+\epsilon}{\log (\log n)}$ with a sufficiently small $\epsilon>$ 0 , we have $\frac{1}{r}(\log n)^{1+r}=\frac{e^{1+\epsilon}}{1+\epsilon}(\log n) \log (\log n)$. So we have $\mathcal{O}((1+2 \kappa) \sqrt{n}(\log n)$ $\log (\log n) \log \frac{n \mu_{0}}{\epsilon}$) iteration complexity with $p=1$ and $r=\frac{1+\epsilon}{\log (\log n)}$. This complexity result improves the one in [2].

References

[1] Y. Q. Bai, M. El Ghami and C. Roos, A new efficient large-update primal-dual interiorpoint method based on a finite barrier, Siam J. on Optimization, 13 (2003), 766-782.
\qquad , A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization, Siam J. on Optimization 15 (2004), 101-128.
[3] G. M. Cho, A new large-update interior point algorithm for $P_{*}(\kappa)$ linear complementarity problems, Journal of Computational and Applied Mathematics 216 (2008), 256-278.
[4] G. M. Cho and M. K. Kim, A new large-update interior point algorithm for $P_{*}(\kappa)$ LCPs based on kernel functions, Applied Mathematics and Computation 182 (2006), 1169-1183.
[5] R. W. Cottle, J. S. Pang and R. E. Stone, The linear complementarity problem, Academic Press, San Diego, CA, 1992.
[6] M. El Ghami, I. Ivanov, J.B.M. Melissen, C. Roos and T. Steihaug, A polynomial-time algorithm for linear optimization based on a new class of kernel functions, Journal of Computational and Applied Mathematics 224 (2009), 500-513.
[7] T. Illés and M. Nagy, A Mizuno-Todd-Ye type preditor-corrector algorithm for sufficient linear complementarity problems, European Journal of Operational Research 181 (2007), 1097-1111.
[8] M. Kojima, N. Megiddo, T. Noma and A. Yoshise, A unified approach to interior point algorithms for linear complementarity problems, Vol.538, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, 1991.
[9] S. G. Nash and A. Sofer, Linear and nonlinear programming, McGraw-Hill, New York, 1996.
[10] Y. E. Nesterov and A. S. Nemirovskii, Interior point polynomial algorithms in convex programming, SIAM Studies in Applied Mathematics 13, Philadelphia PA, 1994.
[11] J. Peng, C. Roos and T. Terlaky, Self-regular functions and new search directions for linear and semidefinite optimization, Mathematical Programming 93 (2002), 129-171.
[12] \qquad , Primal-dual interior-point methods for second-order conic optimization based on self-regular proximities, SIAM J. Optim., 13 (2002), 179-203.
[13] , Self-Regularity, A new paradigm for primal-dual interior-point algorithms, Princeton University Press, 2002.
[14] C. Roos, T. Terlaky and J. Ph. Vial, Theory and algorithms for linear optimization, An interior approach, John Wiley \& Sons, Chichester, U.K., 1997.
[15] S. J. Wright, Primal-dual interior-point methods, SIAM, 1997.
You-Young Cho
Department of Mathematics
Pusan National University
Busan 609-735, Korea
E-mail address: youyoung@pusan.ac.kr
Gyeong-Mi Cho (corresponding author)
Department of Multimedia Engineering
Dongseo University
Busan 617-716, Korea
E-mail address: gcho@dongseo.ac.kr

[^0]: Received March 18, 2009; Revised October 31, 2009; Accepted January 4, 2010.
 2000 Mathematics Subject Classification. 90C33, 90C51.
 Key words and phrases. primal-dual interior point method, kernel function, complexity, polynomial algorithm, linear optimization problem.

 This work was supported by National Research Foundation of Korea Grant funded by the Korean Government (2009-0075076) and 2008 Dongseo Research Fund by the Dongseo University.

