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A LARGE-UPDATE INTERIOR POINT ALGORITHM FOR
P∗(κ) LCP BASED ON A NEW KERNEL FUNCTION

You-Young Cho and Gyeong-Mi Cho

Abstract. In this paper we generalize large-update primal-dual interior

point methods for linear optimization problems in [2] to the P∗(κ) linear

complementarity problems based on a new kernel function which includes
the kernel function in [2] as a special case. The kernel function is neither

self-regular nor eligible. Furthermore, we improve the complexity result
in [2] from O(

√
n(logn)2 log nµ0

ε
) to O(

√
n(logn) log(logn) log nµ0

ε
).

1. Introduction

In this paper we propose a new large-update interior point algorithm for
solving linear complementarity problem(LCP) as follows:

s = Mx+ q, xs = 0, x ≥ 0, s ≥ 0, (1)

where x, s, q ∈ Rn, M ∈ Rn×n is a P∗(κ) matrix, and xs denotes the compo-
nentwise product of the vectors x and s.

Primal-dual interior point method(IPM) is one of the most efficient numeri-
cal methods for various optimization problems. Linear complementarity prob-
lems(LCPs) have many applications in science, economics, and engineering([5]).

It is generally agreed that the iteration complexity of the algorithm is an
appropriate measure for its efficiency([6]). Most of polynomial-time interior
point algorithms are based on the logarithmic barrier function. Peng et al.([11],
[12], [13]) proposed a new variant of interior point methods(IPMs) based on
self-regular barrier functions and achieved so far the best known complexity
result for large-update methods with a specific self-regular barrier function.
Roos et al.([1], [2]) proposed new primal-dual IPMs for linear optimization(LO)
problems based on eligible barrier functions and proposed the unified scheme
for analyzing the algorithm based on four conditions on the kernel function([2]).
Cho et al.([3], [4]) extended the algorithm for LO to P∗(κ) LCPs.
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Motivated by their works, we introduce a new class of kernel functions which
is the generalized form of the ones in [2] and is not eligible. We obtained
O
( (1+2κ)

r n
1

1+p (log n)1+r log nµ0
ε

)
iteration complexity for large-update method.

Taking p = 1 and r = 1+ε
log(logn) , we have O

(
(1 + 2κ)

√
n log n log(log n) log nµ0

ε

)
iteration complexity for P∗(κ) LCP which is better than the one in [2].

The paper is organized as follows. In Section 2 we recall the generic IPM
and propose some basic concepts for LCP. In Section 3 we introduce a new class
of kernel functions and its properties. In Section 4 we derive the complexity
result for the algorithm based on a new kernel function.

We will make use of the following notations throughout the paper. Rn
+ and

Rn
++ denote the set of n-dimensional nonnegative vectors and positive vectors,

respectively. For x ∈ Rn, xmin denotes the smallest component of the vector x.
We denote X and S the diagonal matrices from a vector x and s, respectively,
i.e. X = diag(x) and S = diag(s). e and E denote the n-dimensional vector
of ones and the identity matrix, respectively. For f(t), g(t) : R++ → R++,
f(t) = O(g(t)) if f(t) ≤ c1g(t) for some positive constant c1 and f(t) = Θ(g(t))
if c2g(t) ≤ f(t) ≤ c3g(t) for some positive constants c2 and c3. I denotes the
index set, e.g. I = {1, 2, · · ·, n}. log denotes the natural logarithmic function.

2. Preliminaries

In this section, we recall the generic IPM and introduce basic concepts.

Definition 1. [8] Let κ ≥ 0. P∗(κ) is the class of matrices M satisfying

(1 + 4κ)
∑

i∈I+(ξ)

ξi[Mξ]i +
∑

i∈I−(ξ)

ξi[Mξ]i ≥ 0,

where ξ ∈ Rn, [Mξ]i denotes the i-th component of the vector Mξ and

I+(ξ) = {i ∈ I : ξi[Mξ]i ≥ 0}, I−(ξ) = {i ∈ I : ξi[Mξ]i < 0}.

Lemma 2.1. [8] If M ∈ Rn×n is a P∗(κ) matrix, then

M ′ =
(
−M E
S X

)
is a nonsingular matrix for any positive diagonal matrices X,S ∈ Rn×n.

Corollary 2.2. Let M ∈ Rn×n be a P∗(κ) matrix and x, s ∈ Rn
++. Then for

all c ∈ Rn the system

−M∆x+ ∆s = 0, S∆x+X∆s = c

has a unique solution (∆x,∆s).

The basic idea of primal-dual IPMs is to replace the second equation in (1)
by the parameterized equation xs = µe, µ > 0. Now we consider the following
system:

s = Mx+ q, Xs = µe, x > 0, s > 0. (2)
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Without loss of generality, we assume that (1) has a strictly feasible point, i.e.,
there exists (x0, s0) > 0 such that s0 = Mx0 + q. For this, the reader refers
to [8]. Since M is a P∗(κ) matrix and (1) is strictly feasible, the system (2)
has a unique solution for each µ > 0. We denote the solution (x(µ), s(µ)) for
each µ > 0. We call it the µ-center. The set of µ-centers (µ > 0) is called the
central path of (1). The limit of this central path (as µ goes to zero) exists
and since the limit point satisfies (1), it yields an optimal solution for (1) ([8]).
IPMs follow this central path approximately and approach the solution of (1)
as µ goes to zero.
For given (x, s) := (x0, s0) by applying Newton method to the system (2) we
have the following Newton system:

−M∆x+ ∆s = 0, S∆x+X∆s = µe− xs. (3)

By Corollary 2.2, the system (3) has a unique search direction (∆x,∆s). By
taking a step along the search direction (∆x,∆s), one constructs a new positive
iterate (x+, s+), where

x+ = x+ α∆x, s+ = s+ α∆s,

for some α ≥ 0. To have the motivation of new algorithm we define the following
scaled vectors:

v :=
√
xs

µ
, d :=

√
x

s
, dx :=

v∆x
x

, ds :=
v∆s
s
, (4)

whose ith components are
√
xisi/µ,

√
xi/si, vi[∆x]i/xi, and vi[∆s]i/si, re-

spectively. Using (4), we can rewrite the system (3) as follows:

−M̄dx + ds = 0, dx + ds = v−1 − v, (5)

where M̄ := DMD and D := diag(d). Note that the right side of the second
equation in (5) equals the negative gradient of the logarithmic barrier function
Ψl(v), i.e.,

dx + ds = −∇Ψl(v), (6)

where

Ψl(v) :=
n∑
i=1

ψl(vi), ψl(t) =
t2 − 1

2
− log t, t > 0.

We call ψl the kernel function of the logarithmic barrier function Ψl(v).
The generic interior point algorithm works as follows. Assume that we are

given a strictly feasible point (x, s) which is in a τ -neighborhood of the given
µ-center. Then we decrease µ to µ+ := (1 − θ)µ, for some fixed θ ∈ (0, 1)
and solve the Newton system (3) to obtain the unique search direction. The
positivity condition of a new iterate is ensured with the right choice of the step
size α which is defined by some line search rule. This procedure is repeated
until we find a new iterate (x+, s+) that is in a τ -neighborhood of the µ+-center
and then we let µ := µ+ and (x, s) := (x+, s+). Then µ is again reduced by the
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factor 1 − θ and we solve the Newton system targeting at the new µ+-center,
and so on. This process is repeated until µ is small enough, say until nµ < ε.

Generic Primal-Dual Algorithm

Input:
a threshold parameter τ > 0;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
(x0, s0) and µ0 > 0 such that Ψl(x0, s0, µ0) ≤ τ.

begin
x := x0; s := s0;µ := µ0;
while nµ ≥ ε do
begin
µ := (1− θ)µ;
while Ψl(v) > τ do
begin

solve the system (3) for ∆x and ∆s;
determine a step size α;
x := x+ α∆x;
s := s+ α∆s;
v :=

√
xs
µ ;

end
end

end

When the barrier update parameter θ is independent of n, we call the algorithm
a large-update method.

3. New kernel function

In this section we define a new class of kernel functions and its properties.

Definition 2. The function ψ : R++ → R+ is called a kernel function if ψ is
twice differentiable and satisfies the following conditions:

(a) ψ′(1) = ψ(1) = 0, (b) ψ′′(t) > 0, t > 0, (c) lim
t→0

ψ(t) = lim
t→∞

ψ(t) =∞.

Now we define a new class of kernel functions with parameters p and r as
follows:

ψ(t) :=
tp+1 − 1
p+ 1

+ r(et
− 1
r−1 − 1), 0 ≤ p ≤ 1, 0 < r ≤ 1, t > 0. (7)
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Note that ψ(t) includes the kernel function defined in [2] as a special case. For
ψ(t) we have the following:

ψ′(t) = tp − t− 1
r−1et

− 1
r−1,

ψ′′(t) = ptp−1 +
(1
r

+
(1
r

+ 1
)
t

1
r

)
t−

2
r−2et

− 1
r−1,

ψ′′′(t) = p(p− 1)tp−2 −
( 1
r2

+
3
r

(1
r

+ 1
)
t

1
r +

(1
r

+ 1
)(1
r

+ 2
)
t

2
r

)
t−

3
r−3et

− 1
r−1.

(8)
In this paper, we replace the function Ψl(v) in (6) with the function Ψ(v) as
follows:

dx + ds = −∇Ψ(v), (9)

where Ψ(v) =
∑n
i=1 ψ(vi) and ψ(t) is defined in (7). Hence the new search di-

rection (∆x,∆s) is obtained by solving the following modified Newton-system:

−M∆x+ ∆s = 0, S∆x+X∆s = −µv∇Ψ(v). (10)

Since Ψ(v) is strictly convex and minimal at v = e, we have

Ψ(v) = 0 ⇔ v = e ⇔ x = x(µ), s = s(µ).

We use Ψ(v) as the proximity function to measure the distance between the
current iterate and the µ-center. Also, we define the norm-based proximity
measure δ(v) as follows:

δ(v) :=
1
2
||∇Ψ(v)|| = 1

2
||dx + ds||. (11)

In the following we give properties of ψ(t) which are essential to the complexity
analysis.

Lemma 3.1. Let ψ(t) be as defined in (7). Then we have the following:
(i) ψ(t) is exponentially convex, t > 0.
(ii) ψ′′(t) is monotonically decreasing, t > 0.

Proof. For (i), by Lemma 2.1.2 in [13], it suffices to show the function ψ(t)
satisfies tψ′′(t) + ψ′(t) ≥ 0 for all t > 0. Using (8), we have

tψ′′(t) + ψ′(t) = (p+ 1)tp +
1
r
t−

2
r−1et

− 1
r−1 +

1
r
t−

1
r−1et

− 1
r−1 ≥ 0, t > 0.

For (ii), from (8), ψ′′′(t) < 0. This completes the proof. �

Remark 1. Recall that the function ψ : R++ → R+ is eligible if ψ is three
times differentiable and satisfies the following conditions([2]):

(a) tψ′′(t) + ψ′(t) > 0, t < 1,
(b) tψ′′(t)− ψ′(t) > 0, t > 1,
(c) ψ′′′(t) < 0, t > 0,
(d) 2ψ′′(t)2 − ψ′(t)ψ′′′(t) > 0, t < 1.
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Using (8), we have

tψ′′(t)− ψ′(t) = (p− 1)tp +
1
r
t−

2
r−1et

− 1
r−1 +

(1
r

+ 2
)
t−

1
r−1et

− 1
r−1.

Since
tψ′′(t)− ψ′(t) < −7 < 0 for p =

1
2
, r =

1
4
, t = 28,

condition (b) is not satisfied. Hence ψ(t) is not eligible. Note that the kernel
function in [2] is eligible.

Lemma 3.2. For ψ(t) and p ∈ [0, 1], we have

1
p+ 1

n∑
i=1

vi
p+1 ≤ Ψ(v) +

(pr + r + 1)n
p+ 1

.

Proof. Since ret
− 1
r−1 > 0, we have

ψ(t) =
tp+1

p+ 1
− 1
p+ 1

+ ret
− 1
r−1 − r ≥ tp+1

p+ 1
− 1
p+ 1

− r.

So we have tp+1

p+1 ≤ ψ(t) + pr+r+1
p+1 . Hence we have

1
p+ 1

n∑
i=1

vi
p+1 ≤ Ψ(v) +

(pr + r + 1)n
p+ 1

.

This completes the proof. �

Define ψb(t) := r(et
− 1
r−1 − 1). Then we have ψ(t) := tp+1−1

p+1 + ψb(t). Since

ψ′b(t) = −t− 1
r−1et

− 1
r−1 < 0, ψb(t) is monotonically decreasing in t.

Lemma 3.3. Let β ≥ 1. Then ψ(βt) ≤ ψ(t) + tp+1

p+1 (βp+1 − 1).

Proof. Since ψb(t) is monotonically decreasing in t, ψb(βt) − ψb(t) ≤ 0 for
β ≥ 1. Hence we have

ψ(βt) =
(βt)p+1 − 1

p+ 1
+ ψb(βt)

=
tp+1 − 1
p+ 1

+ ψb(t) +
1

p+ 1
(βp+1tp+1 − tp+1) + ψb(βt)− ψb(t)

= ψ(t) +
tp+1

p+ 1
(βp+1 − 1) + ψb(βt)− ψb(t)

≤ ψ(t) +
tp+1

p+ 1
(βp+1 − 1).

This completes the proof. �

In the following we obtain an estimate for the effect of a µ-update on the
value of Ψ(v).
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Theorem 3.4. Let 0 ≤ θ < 1 and v+ = v√
1−θ . Then we have

Ψ(v+) ≤ Ψ(v) +
θ

(1− θ) 1+p
2

(
Ψ(v) +

(pr + r + 1)n
p+ 1

)
.

Proof. Using Lemma 3.3 with β = 1√
1−θ and Lemma 3.2, we have

Ψ(v+) = Ψ(βv) =
n∑
i=1

ψ(βvi) ≤
n∑
i=1

(
ψ(vi) +

1
p+ 1

(βp+1 − 1)vp+1
i

)
= Ψ(v) +

(
1

(1− θ) 1+p
2

− 1
)

1
p+ 1

n∑
i=1

vp+1
i

≤ Ψ(v) +
1− (1− θ)

1+p
2

(1− θ) 1+p
2

(
Ψ(v) +

(pr + r + 1)n
p+ 1

)
.

Since 1− (1− θ)
1+p
2 ≤ θ for 0 ≤ θ < 1,

Ψ(v+) ≤ Ψ(v) +
θ

(1− θ) 1+p
2

(
Ψ(v) +

(pr + r + 1)n
p+ 1

)
.

This completes the proof. �

Note that at the start of outer iteration of the algorithm, i.e., just before the
update of µ with the factor 1− θ, we have Ψ(v) ≤ τ. During the inner iteration
we have

Ψ(v+) ≤ Ψ(v) +
θ

(1− θ) 1+p
2

(
Ψ(v) +

(pr + r + 1)n
p+ 1

)
≤ τ +

θ

(1− θ) 1+p
2

(
τ +

(pr + r + 1)n
p+ 1

)
.

Each subsequent inner iteration will rise to a decrease of the value of Ψ(v).
Denote

Ψ̃0 := τ +
θ

(1− θ) 1+p
2

(
τ +

(pr + r + 1)n
p+ 1

)
. (12)

Define Ψ0 the value of Ψ(v) after the µ-update. Then Ψ0 ≤ Ψ̃0.

Lemma 3.5. Define % : [0,∞) → [1,∞) be the inverse function of ψ(t) for
t ≥ 1. For 0 ≤ p ≤ 1 and u ≥ 0 we have

%(u) ≥
(
1 + (p+ 1)u

) 1
1+p .

Proof. Let u = ψ(t), t ≥ 1. Since ψb(t) is monotonically decreasing in t and
ψb(1) = 0, ψb(t) < 0 for t > 1. Hence u = ψ(t) = tp+1−1

p+1 + ψb(t) ≤ tp+1−1
p+1 ,

t ≥ 1. This implies (p + 1)u + 1 ≤ tp+1. By the definition of %, %(u) = t ≥(
1 + (p+ 1)u

) 1
1+p . This completes the proof. �

From Lemma 3.1 (ii), we cite the following lemma in [2] without proof.



16 YOU-YOUNG CHO AND GYEONG-MI CHO

Lemma 3.6. (Theorem 4.9 in [2]) Let δ(v) be as defined in (11). Then we
have

δ(v) ≥ 1
2
ψ′
(
% (Ψ(v))

)
.

For notational convenience we denote δ := δ(v) and Ψ := Ψ(v).

Lemma 3.7. Let δ be as defined in (11). Then for all Ψ ≥ 1 and 0 ≤ p ≤ 1
we have

δ ≥ 1
4
(
(p+ 1)Ψ

) p
1+p .

Proof. By Lemma 3.6, Lemma 3.5, and ψ′′(t) > 0,

δ ≥ 1
2
ψ′
(
%(Ψ)

)
≥ 1

2
ψ′
((

1 + (p+ 1)Ψ
) 1

1+p
)

=
1
2

((
1 + (p+ 1)Ψ

) p
1+p − e

(
1+(p+1)Ψ

)− 1
r(1+p)−1 1(

1 + (p+ 1)Ψ
) 1+r
r(1+p)

)

≥ 1
2

((
1 + (p+ 1)Ψ

) p
1+p − 1(

1 + (p+ 1)Ψ
) 1+r
r(1+p)

)

≥ 1
2

((
1 + (p+ 1)Ψ

) p
1+p − 1(

1 + (p+ 1)Ψ
) 1

1+p

)

=
1
2

(p+ 1)Ψ(
1 + (p+ 1)Ψ

) 1
1+p
≥ 1

4
(
(p+ 1)Ψ

) p
1+p ,

where the third inequality is satisfied from e(1+(p+1)Ψ)
− 1
r(1+p)−1 ≤ 1 and the

last inequality from the fact 1 ≤ (p+ 1)Ψ. This completes the proof. �

4. Complexity result

In this section we compute a feasible step size and the decrease of the prox-
imity function during an inner iteration and give the complexity result of the
algorithm. For fixed µ if we take a step size α, then we have new iterates
x+ = x+ α∆x, s+ = s+ α∆s. Using (4), we have

x+ = x

(
e+ α

∆x
x

)
= x

(
e+ α

dx
v

)
=
x

v
(v + αdx)

and

s+ = s

(
e+ α

∆s
s

)
= s

(
e+ α

ds
v

)
=
s

v
(v + αds).

Thus we have

v+ =
√
x+s+

µ
=
√

(v + αdx)(v + αds).
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Define for α > 0, f(α) = Ψ(v+) − Ψ(v). Then f(α) is the difference between
proximities of a new iterate and a current iterate for fixed µ. Using Lemma 3.1
(i), we have

Ψ(v+) = Ψ(
√

(v + αdx)(v + αds) ) ≤ 1
2
(
Ψ(v + αdx) + Ψ(v + αds)

)
.

Hence we have f(α) ≤ f1(α), where

f1(α) :=
1
2
(
Ψ(v + αdx) + Ψ(v + αds)

)
−Ψ(v).

We have f(0) = f1(0) = 0. Taking the derivative of f1(α) with respect to α,
we have

f ′1(α) =
1
2

n∑
i=1

(
ψ′(vi + α[dx]i)[dx]i + ψ′(vi + α[ds]i)[ds]i

)
,

where [dx]i and [ds]i denote the i-th components of the vectors dx and ds,
respectively. Using (9) and (11), we have

f ′1(0) =
1
2
∇Ψ(v)T (dx + ds) = −1

2
∇Ψ(v)T∇Ψ(v) = −2δ(v)2.

Differentiating f ′1(α) with respect to α, we have

f ′′1 (α) =
1
2

n∑
i=1

(
ψ′′(vi + α[dx]i)[dx]2i + ψ′′(vi + α[ds]i)[ds]2i

)
.

Since f ′′1 (α) > 0, f1(α) is strictly convex in α unless dx = ds = 0. Since M is a
P∗(κ) matrix and M∆x = ∆s from (10), for ∆x ∈ Rn,

(1 + 4κ)
∑
i∈I+

[∆x]i[∆s]i +
∑
i∈I−

[∆x]i[∆s]i ≥ 0,

where I+ = {i ∈ I : [∆x]i[∆s]i ≥ 0}, I− = I − I+. Since dxds = v2∆x∆s
xs =

∆x∆s
µ and µ > 0, we have

(1 + 4κ)
∑
i∈I+

[dx]i[ds]i +
∑
i∈I−

[dx]i[ds]i ≥ 0.

For convenience we denote σ+ :=
∑
i∈I+ [dx]i[ds]i and σ− := −

∑
i∈I− [dx]i[ds]i.

In the following we cite some lemmas in [4] without proof.

Lemma 4.1. (Modification of Lemma 4.1 in [4]) σ+ ≤ δ2 and σ− ≤ (1+4κ)δ2.

Lemma 4.2. (Modification of Lemma 4.2 in [4])
∑n
i=1([dx]2i + [ds]2i ) ≤ 4(1 +

2κ)δ2 , ‖dx‖ ≤ 2δ
√

1 + 2κ , and ‖ds‖ ≤ 2δ
√

1 + 2κ .

Lemma 4.3. (Modification of lemma 4.3 in [4]) f
′′

1 (α) ≤ 2(1+2κ) δ2ψ
′′
(vmin−

2αδ
√

1 + 2κ).
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Lemma 4.4. (Modification of lemma 4.4 in [4]) f
′

1(α) ≤ 0 if α is satisfying

−ψ′(vmin − 2αδ
√

1 + 2κ) + ψ
′
(vmin) ≤ 2δ√

1 + 2κ
.(13)

Lemma 4.5. (Modification of lemma 4.5 in [4]) Define ρ : [0,∞) → (0, 1] be
the inverse function of − 1

2ψ
′(t) for 0 < t ≤ 1 and a := 1 + 1√

1+2κ
. Then the

largest step size α satisfying (13) is given by

α̂ :=
1

2δ
√

1 + 2κ

(
ρ(δ)− ρ( aδ)

)
.

Lemma 4.6. (Modification of lemma 4.6 in [4]) Let ρ and α̂ be as defined in
Lemma 4.5. Then

α̂ ≥ 1
(1 + 2κ)ψ′′

(
ρ(aδ)

) .
Define

ᾱ :=
1

(1 + 2κ)ψ′′
(
ρ( aδ)

) . (14)

Then we have ᾱ ≤ α̂.

Lemma 4.7. Let ᾱ be as defined in (14). Then for a = 1 + 1√
1+2κ

and κ ≥ 0,
we have

ᾱ ≥ 1

(1 + 2κ)
(
p+ (2aδ + 1)

(
2
r + 1

)(
1 + log(2aδ + 1)

)1+r
) .

Proof. Using the definition of ρ, we have − 1
2ψ
′(ρ(aδ)) = aδ. Let z = ρ(aδ).

Then −ψ′(z) = 2aδ and 0 < z ≤ 1. From (8), we have −zp + z−
1
r−1ez

− 1
r−1 =

2aδ. Then for 0 < z ≤ 1,

z−
1
r−1ez

− 1
r−1 = 2aδ + zp ≤ 2aδ + 1. (15)

By taking the natural logarithmic function on both sides of (15), we have

z−
1
r − 1−

(1
r

+ 1
)

log z ≤ log(2aδ + 1). (16)

Using (16) and 0 < z ≤ 1, we obtain

z−
1
r ≤ 1 + log(2aδ + 1) +

(1
r

+ 1
)

log z ≤ 1 + log(2aδ + 1).

This implies

zp−1 ≤
(
1 + log(2aδ + 1)

)r(1−p) ≤ (1 + log(2aδ + 1)
)1+r

,

z−1 ≤
(
1 + log(2aδ + 1)

)r ≤ (1 + log(2aδ + 1)
)1+r

, (17)

z−
1
r−1 ≤

(
1 + log(2aδ + 1)

)1+r
.
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From (14), we have for 0 < z ≤ 1 and 0 ≤ p ≤ 1,

ᾱ =
1

(1 + 2κ)ψ′′
(
ρ(aδ)

) =
1

(1 + 2κ)ψ′′(z)

=
1

(1 + 2κ)
(
pzp−1 + 1

r z
− 2
r−2ez

− 1
r−1 + ( 1

r + 1)z−
1
r−2ez

− 1
r−1

)
≥ 1

(1 + 2κ)
(
pzp−1 + 1

r (2aδ + 1)z−
1
r−1 + ( 1

r + 1)(2aδ + 1)z−1
)

=
1

(1 + 2κ)
(
pzp−1 + (2aδ + 1)

(
1
r z
− 1
r−1 + ( 1

r + 1)z−1
))

≥ 1

(1 + 2κ)
(
p+ (2aδ + 1)( 2

r + 1)
)(

1 + log(2aδ + 1)
)1+r ,

where the first inequality follows from (15) and the last inequality from (17).
This proves the lemma. �

Define

α̃ =
1

(1 + 2κ)
(
p+ (2aδ + 1)( 2

r + 1)
)(

1 + log(2aδ + 1)
)1+r . (18)

Note that α̃ ≤ ᾱ. We will use α̃ as the default step size.

Lemma 4.8. (Lemma 1.3.3 in [13]) Suppose that h(t) is a twice differentiable
convex function with h(0) = 0 and h′(0) < 0 and h(t) attains its global mini-
mum at t∗ > 0 and h′′(t) is increasing with respect to t. Then for any t ∈ [0, t∗],

h(t) ≤ th′(0)
2

.

Lemma 4.9. (Modification of lemma 4.8 in [4]) If the step size α is such that
α ≤ ᾱ, then

f(α) ≤ −αδ2.

In our algorithm we assume that τ ≥ 1. Using Lemma 3.7 and the fact Ψ ≥ τ,
we have

δ ≥ 1
4
(
(p+ 1)Ψ

) p
1+p ≥ 1

4
. (19)

Lemma 4.10. For 0 < r ≤ 1 the function

g(δ) = − δ(
1 + log(2aδ + 1)

)1+r

is monotonically decreasing in δ.
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Proof. It suffices to show that the function −g(δ) is monotonically increasing
in δ. If we differentiate −g(δ) with respect to δ, we have

−g′(δ) =
(2aδ + 1)

(
1 + log(2aδ + 1)

)1+r − 2aδ(1 + r)
(
1 + log(2aδ + 1)

)r
(2aδ + 1)

(
1 + log(2aδ + 1)

)2(1+r)
.

Since the denominator is strictly positive, it is enough to show that numerator
is positive. The numerator is

(2aδ + 1)(1 + log(2aδ + 1))1+r − 2aδ(1 + r)
(
1 + log(2aδ + 1)

)r
=

(
1 + log(2aδ + 1)

)r((1 + log(2aδ + 1))(2aδ + 1)− 2aδ(1 + r)
)

=
(
1 + log(2aδ + 1)

)r(1 + (2aδ + 1) log(2aδ + 1)− 2aδr
)
.

Let g̃(δ) := 1 + (2aδ + 1) log(2aδ + 1) − 2aδr. Then g̃′(δ) = 2a log(2aδ + 1) +
2a−2ar. From 1 < a ≤ 2 and (19), we have g̃′(δ) > 0. Since g̃( 1

4 ) > 0, g̃(δ) > 0
for δ ≥ 1

4 . Hence, −g(δ) is monotonically increasing in δ. This completes the
proof. �

Theorem 4.11. Let α̃ be as defined in (18). Then

f(α̃) ≤ −
(
(p+ 1)Ψ

) p
1+p

16(1 + 2κ)
(
p+ 4

r + 2
)(

1 + log
(
a
2

(
(p+ 1)Ψ0

) p
1+p + 1

))1+r .

Proof. Using (18) and Lemma 4.9, we have

f(α̃) ≤ − δ2

(1 + 2κ)
(
p+ (2aδ + 1)( 2

r + 1)
)(

1 + log(2aδ + 1)
)1+r

≤ − δ2

(1 + 2κ)
(
4pδ + δ(2a+ 4)( 2

r + 1)
)(

1 + log(2aδ + 1)
)1+r

= − δ

2(1 + 2κ)
(
2p+ 2a

r + 4
r + a+ 2

)(
1 + log(2aδ + 1)

)1+r

≤ − δ

4(1 + 2κ)
(
p+ 4

r + 2
)(

1 + log(2aδ + 1)
)1+r

≤ −
1
4

(
(p+ 1)Ψ

) p
1+p

4(1 + 2κ)
(
p+ 4

r + 2
)(

1 + log
(
a
2 ((p+ 1)Ψ )

p
1+p + 1

))1+r

= −
(
(p+ 1)Ψ

) p
1+p

16(1 + 2κ)
(
p+ 4

r + 2
)(

1 + log
(
a
2 ((p+ 1)Ψ )

p
1+p + 1

))1+r

≤ −
(
(p+ 1)Ψ

) p
1+p

16(1 + 2κ)
(
p+ 4

r + 2
)(

1 + log
(
a
2 ((p+ 1)Ψ0 )

p
1+p + 1

))1+r ,
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where the second inequality is satisfied from (19), third inequality from 1 <
a ≤ 2, the fourth inequality from Lemma 3.7 and Lemma 4.10, and the last
inequality from the definition of Ψ0. This completes the proof. �

Lemma 4.12. (Lemma 1.3.2 in [13]) Let t0, t1, · · ·, tJ be a sequence of positive
numbers such that

tj+1 ≤ tj − γt1−λj , j = 0, 1, · · ·, J − 1,

where γ > 0 and 0 < λ ≤ 1. Then J ≤ b t
λ
0
γλc.

We define the value of Ψ(v) after the µ-update as Ψ0 and the subsequent values
in the same outer iteration Ψk, k = 1, 2, · · ·. Let K denote the total number of
inner iterations in the outer iteration. Then we have

ΨK−1 > τ, 0 ≤ ΨK ≤ τ.

Lemma 4.13. Let Ψ̃0 be as defined in (12) and K be the total number of inner
iterations in the outer iteration. Then we have

K ≤ 16(1 + 2κ)
(
p+

4
r

+ 2
)

(p+ 1)
1

1+p

(
1 + log

(
(p+ 1)Ψ̃0

))1+r

Ψ̃
1

1+p
0 .

Proof. By Theorem 4.11 with γ = (p+1)
p

1+p

16(1+2κ)
(
p+ 4

r+2
)(

1+log
(
a
2 ((p+1)Ψ0 )

p
1+p+1

))1+r

and λ = 1
1+p , we have

K ≤
16(1 + 2κ)

(
p+ 4

r + 2
)(

1 + log
(
a
2 ((p+ 1)Ψ0 )

p
1+p + 1

))1+r

(p+ 1)
p

1+p
(p+ 1)Ψ

1
1+p
0 .

Since Ψ0 ≤ Ψ̃0 and 1 < a ≤ 2, we have the result. �

Theorem 4.14. Let a P∗(κ) LCP be given and τ ≥ 1. Then the total number
of iterations to have an approximate solution with nµ < ε is bounded by⌈

16(1 + 2κ)
(
p+

4
r

+ 2
)

(p+ 1)
1

1+p (1 + log((p+ 1)Ψ̃0))1+rΨ̃
1

1+p
0

⌉
·
⌈

1
θ

log
nµ0

ε

⌉
,

where ε > 0 is the desired accuracy, µ0 > 0 is given, and θ, 0 < θ < 1, is the
given barrier update parameter.

Proof. If the central path parameter µ has the initial value µ0 > 0 and is
updated by multiplying 1− θ with 0 < θ < 1, then after at most⌈

1
θ

log
nµ0

ε

⌉
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iterations we have nµ < ε([14]). For the total number of iterations, we multiply
the number of inner iterations by that of outer iterations. i.e.,⌈

16(1 + 2κ)
(
p+

4
r

+ 2
)

(p+ 1)
1

1+p (1 + log((p+ 1)Ψ̃0))1+rΨ̃
1

1+p
0

⌉
·
⌈

1
θ

log
nµ0

ε

⌉
.

This completes the proof. �

Remark 2. Taking τ = O(n) and θ = Θ(1), the large-update algorithm has

O
(

(1 + 2κ)
r

n
1

1+p (log n)1+r log
nµ0

ε

)
iteration complexity. In particular, for r = 1+ε

log(logn) with a sufficiently small ε >

0, we have 1
r (log n)1+r = e1+ε

1+ε (log n) log(log n). So we have O
(
(1+2κ)

√
n(log n)

log(log n) log nµ0
ε

)
iteration complexity with p = 1 and r = 1+ε

log(logn) . This
complexity result improves the one in [2].
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