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ABSTRACT

e—sensitivity analysis is a kind of methods for performing sensitivity analysis for linear programming. Its
main advantage is that it can be directly applied for interior—point methods with a little computation.
Although e-sensitivity analysis was proposed several years ago, there have been no studies on its rela—
tionship with other sensitivity analysis methods. In this paper, we discuss the relationship between e-
sensitivity analysis and sensitivity analysis using an optimal basis.

First, we present a property of e—sensitivity analysis, from which we derive a simplified formula for
finding the characteristic region of e-sensitivity analysis. Next, using the simplified formula, we examine
the relationship between e-sensitivity analysis and sensitivity analysis using optimal basis when an e
optimal solution is sufficiently close to an optimal extreme solution. We show that under primal nonde—
generacy or dual nondegeneracy of an optimal extreme solution, the characteristic region of e
sensitivity analysis converges to that of sensitivity analysis using an optimal basis. However, for the
case of both primal and dual degeneracy, we present an example in which the characteristic region of e
sensitivity analysis is different from that of sensitivity analysis using an optimal basis.
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1. INTRODUCTION

In linear programming, it is important to know how the optimal solutions are af-
fected when the input data are changed. Sensitivity analysis enables us to under-
stand the implications of changing the input data on the optimal solution by a
small number of computations.

Methods for sensitivity analysis in the simplex method have been well devel-
oped and given in numerous papers and textbooks (For example, see [3] and [6]).
They are based on the concept of optimal bases, and require just a little more
computation. However, according to Jansen, Jong, Roos, and Terlarky [8], the
methods based on an optimal basis may yield incomplete information in the case
of degeneracy because of alternative optimal bases.

Other methods of sensitivity analysis are presented by Yang [13], Adler and
Monteiro {1], and Park et al. [4]. Yang [13] first suggested positive sensitivity
analysis method which can be performed for an optimal non-extreme solution in
linear programming. Park et al. [5] studied the properties of positive sensitivity
analysis and its relationship with other sensitivity analysis. Adler and Monteiro
[1] developed a method of parametric analysis on the right-hand side by introduc-
ing the optimal partition. To use positive sensitivity analysis or Adler and Mon-
teiro’s method, we need an optimal solution or the optimal partition, which re-
quires additional computations in interior-point methods for linear programming
([2, 10]). Moreover, since the worst-case computational complexity of finding the
characteristic region of the two sensitivity analysis methods is the same with that
of solving linear programming, other practical sensitivity analysis methods were
needed. For the case, Kim, Park, and Park [9] developed e-sensitivity analysis
which can be directly applied to interior-point solutions produced by interior-point
methods. The main idea of e-sensitivity analysis is that the final solution of inte-
rior point methods is linked with the scaling vector and the input data of linear
programming. The characteristic region of e-gsensitivity analysis can be found with
a small number of additional computations.

Although e-sensitivity analysis was proposed several years ago, there have
been no studies on its relationship with other sensitivity analysis methods. Al-
though Kim, Park, and Park [9] showed that the characteristic region of -
sensitivity analysis converges to that of sensitivity analysis using an optimal ba-
sis under the assumption of nondegeneracy, the relationship between ¢-sensitivity
analysis and sensitivity analysis using an optimal basis under degeneracy has not
been discussed. The purpose of this paper is to examine the limiting behavior of e-
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sensitivity analysis applied to an e-optimal solution converging to an optimal so-
lution. First, we obtain a property of e-sensitivity analysis that leads to a simpler
formula for calculating the characteristic region of e-sensitivity analysis (Section
2). Next, we study the relationship between e-sensitivity analysis at an e-optimal
solution and sensitivity analysis using an optimal basis when the c-optimal solu-
tion converges to an optimal extreme point solution (Section 3,4). The results ob-
tained from this study will lead to a better understanding of the behavior of e-
sensitivity analysis for interior-point methods.

The organization of this paper is as follows: In the next section, the definition
of e-sensitivity analysis is given, and a simplified formula for calculating its char-
acteristic region is developed. In Section 3, we present the relationship between e-
sensitivity analysis and sensitivity analysis using an optimal basis under primal
nondegeneracy or dual nondegeneracy. In Section 4, the relationship between e-
sensitivity analysis and sensitivity analysis using an optimal basis under both
primal and dual degeneracy is discussed. Finally, some conclusions are given in

Section 5.

2. €-SENSITIVITY ANALYSIS

Consider the following linear programming (LP):

Min cTx Max bT.’)’
(P): st Ax=b (D): st ATy+s=c
x>0 s20

where ce ", be ™ and A e R™" with RANK(A)=m . Throughout this paper, it
is assumed that both (P) and (D) are feasible.

First of all, we define an e-optimal solution.

Definition 1. (e-optimal solution) A solution (x, y, s) is called an e-optimal solu-
tion if (x, y, s) satisfies the following three conditions:

Ax=bx20
ATyis=c, 520

X" §<€

where € 1s a small posttive number.
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Moreover, an ¢-optimal solution (x, v, s) is called an e-optimal interior solution
if x>0 and s>0.
Consider another linear programming problem (LP,) with a cost coefficient

¢, that is perturbed by the amount of #:

Min (c+6e,)Tx Max b7y
(P)): st Ax=b (Dy): st ATy+s=c+0e,
x20 §20

where ¢, e ®" is a vector such that the k-th element is one and the others are

zeros. Let I denote the identity matrix with the dimension that will be deter-
mined by the context of the problem in such a way that will avoid confusion.
Given an e-optimal interior solution (x,7,5), we define e-sensitivity analysis as

the following:

Definition 2. (e-sensitivity analysis) e-sensitivity analysis at an eoptimal inte-
rior solution (x,y,5) is to find the range of perturbation 8 within which a solu-

tion (%, ,4) remains an e-optimal solution to (LP,) where D =diag{, /fj 5},

5 =5+6(AD?*AT) AD%,,
and
§=5+0(I-AT(AD*AT) ' AD?)e,.

The range of perturbation 6 is called the characteristic region of e-sensitivity

analysis at (%,5,5).

In this paper, we consider only e-sensitivity analysis where a cost coefficient
is changed. See [9] for e-sensitivity analysis where one of the right-hand sides is
perturbed. The result presented at this paper can also be applied to e-sensitivity
where one of the right-hand sides is perturbed. The characteristic region of -
sensitivity analysis at an e-optimal solution (%, 7, 5) is calculated by the following

formulas:

Q) If %7 Fe, >0,mjax{—st—|ij >04<6<0,
ik

(i) If ¥"Fe, <0, 0<6 <min{-—|F}, <0}
J ik

(i) If ¥ Fe, =0, m?x{—% |Fy, >05<0< m@n{—%{'—l Fj, <0},
jk 7 jk
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where F=1-AT(AD?AT)'AD? and D =diag{,[%;/5;}. (For the details, see [9]).

From the above formulas, the value of %7 Fe, plays an important role in the

calculation of the characteristic region of e-sensitivity analysis. It was shown that
%7 Fe, converges to zero as an e-optimal interior solution converges to an optimal

extreme solution which is both primal and dual nondegenerate ([9]). In this paper,
we will show that T Fe, converges to zero as an e-optimal solution converges to

any optimal solution that may be degenerate. Because of this property, only for-
mula (iii) can be used to find the characteristic region of e-sensitivity analysis if
an e-optimal solution is sufficiently close to an optimal solution. Given an index
set ¢ of variables, 4, denotes the submatrix of A with columns that correspond

to indices in o. Similarly, z_ denotes the subvector of a vector z with compo-
nents that correspond to indices in o . Let (¥, 3,5 )and (x*,y*,s") be an e-optimal
interior solution and an optimal solution to (LP), respectively. Let B={j|x} >0},
and N ={j|xj=0} In order to show that X¥TFe, -0 as (X,5,5)—> (x",y",s"), we

rewrite X7 Fe, as the following:

%' Fe, = %7 (e, - AT(AD*AT) ' AD%,)
=x5((ey)p — AF(AD2ATY 1 AD%,)
+ %0 (ep)w - AR (AD?AT) ! AD%,) @®
=55 D} ((ep) s — A (AD?AT Y AD%,)
+Z3(e)y ~ AN(AD*AT) " AD).
Lemma 1 and 2 show that the first term of equation (1) converges to zero as
(%,5,5) converges to (x*,y*,s"). In Theorem 3, we prove that the second term of
equation (1) also converges to zero as (%, 7,5 ) converges to (x*,y*,s*), and finally

show that x7Fe, >0 as (%,7,5) > (x",y",s").

Lemma 1. Let (x,5,5) and (x*,5*,s*) be an e-optimal interior soluiion and an op-
timal solution to (LP), respectively. Let B and N denote the following index sets of

variables:

B={jlx}>0}, N={jix; =0}

Let D =diag{,[%;/5;} and v"=(AD?AT)" AD%,, . Then, ApDi((e,)s~A%v") >0 as

(E’ 5’-) E) - (x*,y*)s') .
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Proof. Consider the weighted least-square problem (WL(D)):

2
min || De, — DATv || .
veR"™

It is well known that if AD has full rank, then v* is a unique optimal solution to
(WL(D)) (See [7]). Moreover, v* satisfies the following equations:

AD(De, - DATv")=0
& AD%,;, - AD*ATv" =0 2)
< ApDi((e)p ~ AgV") = —AyDj(e) y - Ajv™)).

Each diagonal element of D, converges to zero as (x, 7,5 ) converges to (x°,y*,s*),

and each component of v* is known to be bounded for any D with positive diago-
nal elements([11]). Therefore, the right-hand side of equation (2) converges to zero
as (x,7,5) converges to (x*,y*,s"), which implies that the left-hand side of equa-

tion (2) also converges to zero. O

Lemma 2. Let (%, 5,5) and (x*,y",s*) be an e-optimal interior solution and an op-
timal solution to (LP), respectively. Let B and N denote the following index sets of

variables:
B={jlx}; >0} N ={jlx} =0}
Let D = diag{\lﬁ—:} /6_'1} and v‘ = (AD2AT)_1AD2ek B Then’ §:£D12;((ek)3 _ Agva) 50 as
(%, 5,5) > x",y",s").
Proof.
.-S_gD%((ek)B —Agv*)
=(cg — A5 D} ((ex)p - Afv") ®

= cEDE((ep)p - ARV") - 3T AgDE((ep)5 - Afv")
= (") AgD}((ep)p - ATv") - 7T AgD5((ex) — AfV")

Since ApDi((ey)s — Afv") » 0 by Lemma 1, both the first and second term of the

right-hand side of equation (3) converge to zero as (%, y,5) converges to (x*,y",s*).0
Now, we will show that x¥TFe, 50 as (%,7,5) - (x",y",s").

Theorem 3. Let (%, 5,5) and (x",y*,s") be an e-optimal interior solution and an opti-
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mal solution to (LP), respectively. Let D = diag{,[x;/5;} andF =I- AT(AD*AT)" AD*.

Consequently, " Fe, -0 as (X,5,5) > (x",y",s").
Proof. Let B and N denote the following index sets of variables:
B={jlx;>0}, N ={jlx; =0}
Let v' =(AD?AT) ' AD?%, . From equation (1),
X7 Fe, =55 D3((ep)g — A5v") + T5 (e} — AFVY). 4)

From Lemma 2, the first term of equation (4) converges to zero as (x,y,5) con-
verges to (x*,»",s"). Since each component of v* is bounded, and each component
of x, converges to zero, the second term of equation (4) also converges to zero.

Therefore, xTFe, >0 as (x,%,5) > (x",y",s"). D

3. THE RELATIONSHIP BETWEEN €-SENSITIVITY ANALYSIS AND SEN-

SITIVITY ANALYSIS USING AN OPTIMAL BASIS UNDER PRIMAL OR
DUAL NONDEGENERACY

Let (x°,y",s")be an optimal extreme solution to (LP). In addition, let (%, 7,5) be
an c-optimal interior solution. If both x* and (y",s") are nondegenerate optimal
extreme solutions to (P) and (D), respectively, the characteristic region of e-
sensitivity analysis at (%, y,5) converges to that of sensitivity analysis using the
optimal basis associated with (x*,y",s*) as (&, 7,5) converges to (x*,y",s*) ([9]).
However, when x* or (y°,s") is degenerate, the relationship between e-sensitivity
analysis and sensitivity analysis using an optimal basis has not been discussed.
In Section 3, we show that if either x* or (y*,s*) is nondegenerate, the character-
istic region of e-sensitivity analysis at (x,y,5) converges to that of sensitivity
analysis using the optimal basis associated with (x*,y",s*) as (%, 7,5 ) converges to
(x”,y%s"). In Section 4, we draw a conclusion from an example that if both x*
and (y*,s") are degenerate, the characteristic region of e-sensitivity analysis at
(%, 7,5) may not converge to that of sensitivity analysis using an optimal basis

associated with (x*,y* s*).
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Let B and N denote the index set of the basic variables and the nonbasic
variables of an optimal basis of (LP), respectively. When ¢, ck is perturbed, the

characteristic region of sensitivity analysis using the optimal basis Ay is equal

to the range of ¢ such that

T
[A? }Az‘f (cp +0(er)p) < {CB +0lews } )
A

CN +0(ek)N

Let (x*,y",s") be the optimal extreme solution determined by the optimal ba-

sis Ap. Equation (5) can be rewritten as the following:

s +0(e, + ATAZ (e,))2 0 ’ ©

o s +0(e, +ATn)20 -

where 7 =A43"(e,)5. On the other hand, e-sensitivity analysis at an e-optimal in-

terior solution (%, y,5) finds the range of ¢ such that
§+0(e,-ATV") 20 ("

where v* = (AD?AT)y'AD%, and D =diag{%,;/5;}. Recall that x"Fe, can be re-
garded as zero if (%, 7,5) is sufficiently close to (x*,y°,s*). Comparing equation (6)

with equation (7), we find that e-sensitivity analysis is analogous to sensitivity

analysis using the basis Ay, except that z is replaced by v*. If v* converges to
= as (¥,7,3) converges to (x°,5*,s*), we can conclude that the characteristic re-

gion of e-sensitivity analysis converges to that of sensitivity analysis using the
optimal basis Az. In the next lemma and theorem, we will show that under the

appropriate assumption »* convergesto z as (¥,7,3 )converges to (x”,y",s").

Consider the weighted least-square problem (WL(D)):
(WL(D)): min | De,, - DA"v ||
veR™

where D is a diagonal matrix with positive diagonal elements. Note that the op-
timal solution to (WL(D))depends on the diagonal matrix D.

Lemma 4. Let B and N denote the index set of the basic variables and the non-
basic variables of an optimal basis of (LP), respectively. Suppose that a sequence
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{D', D?,..} of diagonal matrices with positive diagonal elements satisfies the fol-

lowing conditions:

() Dj=2¢,V;eB and V, 2K, where K 1is some sufficiently large integer and

& is some positive constant,

(i) lim D} =0, V; €N,

Let v” be an optimal solution to the weighted least square problem (WL(D") )and

7 —> Azl (e,)p - Then, v 57 as r > w

Proof. The optimal solution v" to (WL(D")) is rewritten as r

v = (A(Dr)ZAT)—lA(Dr)Zek
= (Ap(D5)? AL + Ay (D)2 AR) M (Ap(D5)*(er)p ®
+ An(Dy)2(ep)n)

Since Ay is a basis matrix and each diagonal element of D}, converges to zero,

we can obtain from equation (8) that v" —» AzT(e,); as r—w». D

Lemma 4 implies that the optimal solution to (WL(D")) converges to the op-

timal solution to the weighted least square problem (WL(Dj}))as r — o

WL(D"): min|D"e, - D" A%”z

WL(Dg): min
veR"™

Di(er)p - DzrsAgU"z

Theorem 5. Let B and N denote the index set of the basic variables and the non-
basic variables of an optimal basis of (LP), respectively. Let (x*,y*,s*) be the opti-

mal extreme solution associated with the basts Ay. Let @ ={(x",5",%" )| r=1,2,--}
be a sequence of e-optimal interior solutions with lim, , (%",5 % )= (x*,y",s"). If
the sequence @ satisfies condition (a),
(@) as r > o,
r?ea}\)lc {x;/5]}
min {x] /5])}

jeB

then the characteristic region of e-sensitivity analysis at (x7,5,%") converges to
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that of sensitivity analysis using Ap as r—w.

Proof. Let 1/4” = minjeg{m} and D" = diag{m}. In addition, let Z™ = a" D"
and v" = (A(D")?AT) 1 A(D")%e, . Since the optimal solution to (WL(D")) is equal to
the optimal solution to (WL(Z")),v"is the optimal solution to both (WL(D")) and
(WL(Z")). Moreover, since the sequence of diagonal matrices, {Z!, Z2, ..}, satisfies
the condition (a), it also satisfies the assumption of Lemma 4. Consequently, by
using Lemma 4 we obtain that v" > 7 as r > «. This, together with equations

(6) and (7), implies that the characteristic region of e-sensitivity analyzes at the e-
optimal solutions of @ converges to the characteristic region of sensitivity analy-

sis using the optimal basis A5 . O

Condition (a) in the above theorem can be explained in connection with the
weighted least square problem (WL(D")):

r T 2
DB(ek)B - DgABU

D5 (ex)y — Dy ALY

min
veR™

Condition (a) assumes that the weights of rows in B is infinitely larger than
those of rows in N. If x* is nondegenerate, condition (a) is obviously satisfied.
Therefore, the characteristic region of e-sensitivity analysis at (x",5",%¥") con-
verges to that of sensitivity analysis using Ay as r — «. However, if x* is de-

generate, condition (a) may not be satisfied because x] -0 and s} -0 for some

j e B Inthis case, consider another condition (b):

(b) there exists positive constants u J and 9; such that for some large K,

A r .s" > i * =gt =
y}sJijsq}jsj,Vr_K if x; =8 0.

Condition (b) means that if both x} and s} converge to zero, then they do so
at the same rate. In interior-point methods, this assumption does not seem to be
too restrictive([12]). If (y*,s” )is nondegenerate and condition (b) holds, then the
sequence of Q also satisfies condition (a), which implies that the characteristic
region of e-sensitivity analysis at (x7,7",%" )converges to that of sensitivity analy-
sisusing Ag as r >

For example, consider the following linear programming problem (LP1):
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Min
(P1):

Max

s.t.
(D2):

4x, +5x9
4x; +3xy x5 =12
2%, +5x4 - Xy =10
3x; +4x, -x5 =11
ijO,jzl,---,5
12y; +10y5 +11y3
4y; + 2y, + 3y3+s; =4
3y1+ By, + 4y;  +5g =5
-N + 83 =0
- ¥ + 8, =0
- Y3 +55=0

§;20,j=1,,5

113

The feasible solutions and the optimal solutions of (P1) and (D1)are displayed -

in Figure 1. (P1) has a unique optimal extreme solution #!' that is degenerate,

—
L

N

Yy
/7, 0, 8/7)

V)

» (5/7, 4/7, 0)

)

Figure 1. The optimal solutions of (P1) and (D1)

and (D1)has two optimal extreme solutions, (3',8!)and (3$2,3?), which are both

nondegenerate. Note that z!

=(15/7,8/7,0,0,0)7,

$1=(0,0,1/7,0,8/7)T, and &%=

(0,0,5/7,4/7,0)T . There are two optimal bases, Ap and Ap with basic variables

that are presented in Table 1. When ¢, is perturbed, the characteristic regions of

sensitivity analysis using Ap and Ap respectively, are also given in Table 1.
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Table 1 The characteristic regions of two optimal bases

optimal basis index set of basic variables optimal solution characteristic region
Ap: B'={1,2,4} (£4,5",8Y -2<6<1/3
Ap: B?={1,2,5} (&',5%,8%) -2<6<5

Consider an e-optimal interior solution (%!,5',5%):

x=(15/7+6,8/7+6,75,75,15)7,
¥y =1/7-6,65817-5)T,
5 =(56,25,1/7~5,6,8/7-8)T,

where § is a small positive number. As § converges to 0, the e-optimal interior
solution (x!,7',5! )converges to the optimal solution (£!,3%,4!), and condition (b) is
satisfied. Therefore, the characteristic region of e-optimal solution at (x',3!,5')

converges to that of sensitivity analysis using the optimal basis A, . Consider

another e-optimal interior solution (%!,52,5%):

X' =(15/7+6,8/7+6,75,76,76)",
72 =(5/7-5,4/7-5,6)7,
52=(35,46,5/7-5,4/7-65,6)T.

As 5 converges to 0, the e-optimal interior solution (x',5%,5%) converges to
the optimal solution (#!,5?%,5?), and condition (b) is satisfied. Therefore, the char-
acteristic region of e-optimal solution at (z?,5%,5% Jconverges to that of sensitivity

analysis using the optimal basis A, .

4. The relationship between e-sensitivity analysis and sensitivity analysis us-
ing an optimal basis under primal and dual degeneracy

In this section, we investigate the limiting behavior of e-sensitivity analysis at an
e-optimal interior solution that converges to an optimal extreme solution that is
both primal and dual degenerate. Consider an example of linear programming
problem, (LP2), which has a primal and dual degenerate optimal extreme solution.
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Min  2x; +5xy +x5
(P2): s.t. 2x, +5xy +x3 =15
4%, +3x9 -%4=9
x; 20,j=1,---,4
Max 15y, +9y,

st. 2y, + 4y, +8; =2

(D2): 5,43y,  +5 =5
N + 83 =1

- ¥ +8,=0

§;20,j=1,,4

Figure 2 shows the feasible solutions and the optimal solutions of (P2) and
(D2). (P2) has three optimal extreme solutions, z!,%% 23, and (D2) has a unique

optimal extreme solution, (5!, 8!).

#=015/2,0,021)7,%2=(0,3,0,0)7,2% =(9/4,0,21/2,0)7,
=107, =0,0,0,07"

Moreover, (LP2) has five optimal bases, with basic variables that are listed in
Table 2. The optimal solution (£2,3',5') has three associated optimal bases, A,

Ag. and Ay, . The characteristic region of A, is equal to that of A, , but not
equal to that of A,, . However, e-sensitivity analysis depends only on an e-optimal
interior solution. This property of e-sensitivity analysis raises the following ques-
tion: If an e-optimal interior solution (¥,%,5) converges to (£%,5',5'), with which of
the three optimal bases should the characteristic region of e-sensitivity analysis
be compared? For example, consider an e-optimal interior solution (X,y,5) to
(LP2):

X =(26,3-6,6,56)7,

y=(1-350)",

5=(25,126,36,5)T

where 6 is a small positive number. As § converges to zero, (¥,7,5 ) converges to
(#%,5',8"), and the characteristic region of e-sensitivity analysis at (%,7,5) con-
verges to those of 4, and A,., but not to that of 4, .

From the above example, we can conclude that under primal and dual degen-
eracy of an optimal extreme solution (x*,y*,s*), the characteristic region of e-

sensitivity analysis at an e-optimal interior solution, which converges to (x*,5",s"),
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may not converges to that of sensitivity analysis using an optimal basis associ-
ated with (x*,y*,s")

24

]
1
1
'
1
'
1
]
'
]
] [y
1
'
'
1
1
]
'
'
]
1

9/4,0,212)  \

Figure 2. The optimal solutions of (P2) and (D2)

D2)

Table 2. The characteristic regions of five optimal bases

optimal basis

index set of basic variables

optimal solution

characteristic region

Ap B'={,2} (%2, 5,89 6<0
Ap: ={1,3} (#,5,8H 620
Aps ={1,4} (&,34,8") 020
Aps ={2,3} (&%,5",8") 0<7<0
Ap: ={2,4 (#%,5,8") 00

5. CONCLUSION

In this paper, we examined some properties of e-sensitivity analysis. First, we

showed that the value %7 Fe, converges to zero as an e-optimal interior solution

converges to any optimal solution, from which the simpler formula of e-sensitivity

analysis was derived. Because of this property, we can regard the value of x7Fe,

as zero when an e-optimal solution is sufficiently close to an optimal solution.
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To examine the limiting behavior of ¢-sensitivity analysis when an e-optimal
solution is sufficiently close to an optimal extreme solution, we compared the
characteristic region of e-sensitivity analysis with that of sensitivity analysis us-
ing an optimal basis. Under primal nondegeneracy or dual nondegeneracy of an
optimal extreme solution, the characteristic region of e-sensitivity analysis con-
verges to that of sensitivity analysis using the optimal basis associated with the
optimal extreme solution. However, if an optimal extreme solution is primal and
dual degenerate, it has more than one associated optimal basis, and each optimal
basis may have a different characteristic region. In this case, the characteristic
region of e-sensitivity analysis may not converge to that of sensitivity analysis
using an optimal basis associated with the optimal extreme solution.
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